Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's the equivalent C code for the provided Python program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | #include <stdlib.h> #include <math.h> #include <stdio.h> #define INF 1e9 float solve_dp(float* arr, int size, int lines_left) { float** dp = (float**)malloc((size + 1) * sizeof(float*)); int** how = (int**)malloc((size + 1) * sizeof(int*)); int i, j, k; for (i = 0; i <= size; i++) { dp[i] = (float*)calloc((lines_left + 1) * 10, sizeof(float)); how[i] = (int*)calloc((lines_left + 1) * 10, sizeof(int)); for (j = 0; j < lines_left + 1; j++) { for (k = 0; k < 10; k++) { dp[i][j * 10 + k] = INF; how[i][j * 10 + k] = -1; } } } for (i = size; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j * 10 + k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j * 10 + k + 1] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = dp[i + 1][j * 10 + k + 1]; how[i][j * 10 + k] = k + 1; } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][(j - 1) * 10] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = cost + dp[i + 1][(j - 1) * 10]; how[i][j * 10 + k] = 0; } } } } } } // Reconstruct the solution int taken_lines[size]; int taken_count = 0; i = j = k = 0; while (i < size) { if (how[i][j * 10 + k] == 0) { // Chose to take the line taken_lines[taken_count++] = size - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Free memory for (i = 0; i <= size; i++) { free(dp[i]); free(how[i]); } free(dp); free(how); return dp[0][lines_left * 10 + 6]; } int main() { float graph[] = {1, 2, 3, 4, 5}; int size = sizeof(graph) / sizeof(float); int lines_left = 3; printf("Minimum cost: %f\n", solve_dp(graph, size, lines_left)); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | #include <stdlib.h> #include <math.h> #include <stdio.h> #define INF 1e9 float solve_dp(float* arr, int size, int lines_left) { float** dp = (float**)malloc((size + 1) * sizeof(float*)); int** how = (int**)malloc((size + 1) * sizeof(int*)); int i, j, k; for (i = 0; i <= size; i++) { dp[i] = (float*)calloc((lines_left + 1) * 10, sizeof(float)); how[i] = (int*)calloc((lines_left + 1) * 10, sizeof(int)); for (j = 0; j < lines_left + 1; j++) { for (k = 0; k < 10; k++) { dp[i][j * 10 + k] = INF; how[i][j * 10 + k] = -1; } } } for (i = size; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j * 10 + k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j * 10 + k + 1] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = dp[i + 1][j * 10 + k + 1]; how[i][j * 10 + k] = k + 1; } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][(j - 1) * 10] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = cost + dp[i + 1][(j - 1) * 10]; how[i][j * 10 + k] = 0; } } } } } } // Reconstruct the solution int taken_lines[size]; int taken_count = 0; i = j = k = 0; while (i < size) { if (how[i][j * 10 + k] == 0) { // Chose to take the line taken_lines[taken_count++] = size - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Free memory for (i = 0; i <= size; i++) { free(dp[i]); free(how[i]); } free(dp); free(how); return dp[0][lines_left * 10 + 6]; } int main() { float graph[] = {1, 2, 3, 4, 5}; int size = sizeof(graph) / sizeof(float); int lines_left = 3; printf("Minimum cost: %f\n", solve_dp(graph, size, lines_left)); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | #include <stdlib.h> #include <math.h> #include <stdio.h> #define INF 1e9 float solve_dp(float* arr, int size, int lines_left) { float** dp = (float**)malloc((size + 1) * sizeof(float*)); int** how = (int**)malloc((size + 1) * sizeof(int*)); int i, j, k; for (i = 0; i <= size; i++) { dp[i] = (float*)calloc((lines_left + 1) * 10, sizeof(float)); how[i] = (int*)calloc((lines_left + 1) * 10, sizeof(int)); for (j = 0; j < lines_left + 1; j++) { for (k = 0; k < 10; k++) { dp[i][j * 10 + k] = INF; how[i][j * 10 + k] = -1; } } } for (i = size; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j * 10 + k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j * 10 + k + 1] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = dp[i + 1][j * 10 + k + 1]; how[i][j * 10 + k] = k + 1; } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][(j - 1) * 10] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = cost + dp[i + 1][(j - 1) * 10]; how[i][j * 10 + k] = 0; } } } } } } // Reconstruct the solution int taken_lines[size]; int taken_count = 0; i = j = k = 0; while (i < size) { if (how[i][j * 10 + k] == 0) { // Chose to take the line taken_lines[taken_count++] = size - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Free memory for (i = 0; i <= size; i++) { free(dp[i]); free(how[i]); } free(dp); free(how); return dp[0][lines_left * 10 + 6]; } int __delete_this__main() { float graph[] = {1, 2, 3, 4, 5}; int size = sizeof(graph) / sizeof(float); int lines_left = 3; printf("Minimum cost: %f\n", solve_dp(graph, size, lines_left)); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
main.sh: line 2: 16 Segmentation fault (core dumped) ./a.out
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a possible C implementation of the given Python program. Note that this implementation assumes the input `graph` is a null-terminated array of floats.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | #include <stdlib.h> #include <stdio.h> #include <math.h> #define INFINITY (1e9) float solve_dp(float* arr, int size, int lines_left) { int i, j, k, n = size + 1; float** dp = malloc((n + 1) * sizeof(float*)); int** how = malloc((n + 1) * sizeof(int*)); for (i = 0; i <= n; i++) { dp[i] = calloc((lines_left + 1) * 10, sizeof(float)); how[i] = calloc((lines_left + 1) * 10, sizeof(int)); for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { dp[i][j * 10 + k] = INFINITY; } } } for (i = n - 1; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == n - 1 && j == 0) { dp[i][j * 10 + k] = 0; } else { // Option 1: don't take the line if (i < n - 1 && k < 9) { if (dp[i + 1][j * 10 + k + 1] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = dp[i + 1][j * 10 + k + 1]; how[i][j * 10 + k] = k + 1; } } // Option 2: take the line if (i < n - 1 && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][(j - 1) * 10] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = cost + dp[i + 1][(j - 1) * 10]; how[i][j * 10 + k] = 0; } } } } } } int taken_lines_size = 0; float* taken_lines = malloc(sizeof(float)); int current_line_size = 1; float* current_line = malloc(sizeof(float)); i = 0; j = lines_left; k = 6; while (i < n - 1) { if (how[i][j * 10 + k] == 0) { // Chose to take the line if (current_line_size == 1) { current_line[0] = n - i - 1; } else { current_line = realloc(current_line, current_line_size * sizeof(float)); current_line[current_line_size - 1] = n - i - 1; } current_line_size++; if (current_line_size == 10) { taken_lines = realloc(taken_lines, (taken_lines_size + 10) * sizeof(float)); memcpy(&taken_lines[taken_lines_size], current_line, 10 * sizeof(float)); taken_lines_size += 10; current_line_size = 0; } i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } free(current_line); for (i = 0; i <= n; i++) { free(dp[i]); free(how[i]); } free(dp); free(how); return dp[0][lines_left * 10 + 6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | #include <stdlib.h> #include <stdio.h> #include <math.h> #define INFINITY (1e9) float solve_dp(float* arr, int size, int lines_left) { int i, j, k, n = size + 1; float** dp = malloc((n + 1) * sizeof(float*)); int** how = malloc((n + 1) * sizeof(int*)); for (i = 0; i <= n; i++) { dp[i] = calloc((lines_left + 1) * 10, sizeof(float)); how[i] = calloc((lines_left + 1) * 10, sizeof(int)); for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { dp[i][j * 10 + k] = INFINITY; } } } for (i = n - 1; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == n - 1 && j == 0) { dp[i][j * 10 + k] = 0; } else { // Option 1: don't take the line if (i < n - 1 && k < 9) { if (dp[i + 1][j * 10 + k + 1] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = dp[i + 1][j * 10 + k + 1]; how[i][j * 10 + k] = k + 1; } } // Option 2: take the line if (i < n - 1 && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][(j - 1) * 10] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = cost + dp[i + 1][(j - 1) * 10]; how[i][j * 10 + k] = 0; } } } } } } int taken_lines_size = 0; float* taken_lines = malloc(sizeof(float)); int current_line_size = 1; float* current_line = malloc(sizeof(float)); i = 0; j = lines_left; k = 6; while (i < n - 1) { if (how[i][j * 10 + k] == 0) { // Chose to take the line if (current_line_size == 1) { current_line[0] = n - i - 1; } else { current_line = realloc(current_line, current_line_size * sizeof(float)); current_line[current_line_size - 1] = n - i - 1; } current_line_size++; if (current_line_size == 10) { taken_lines = realloc(taken_lines, (taken_lines_size + 10) * sizeof(float)); memcpy(&taken_lines[taken_lines_size], current_line, 10 * sizeof(float)); taken_lines_size += 10; current_line_size = 0; } i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } free(current_line); for (i = 0; i <= n; i++) { free(dp[i]); free(how[i]); } free(dp); free(how); return dp[0][lines_left * 10 + 6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | #include <stdlib.h> #include <stdio.h> #include <math.h> #define INFINITY (1e9) float solve_dp(float* arr, int size, int lines_left) { int i, j, k, n = size + 1; float** dp = malloc((n + 1) * sizeof(float*)); int** how = malloc((n + 1) * sizeof(int*)); for (i = 0; i <= n; i++) { dp[i] = calloc((lines_left + 1) * 10, sizeof(float)); how[i] = calloc((lines_left + 1) * 10, sizeof(int)); for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { dp[i][j * 10 + k] = INFINITY; } } } for (i = n - 1; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == n - 1 && j == 0) { dp[i][j * 10 + k] = 0; } else { // Option 1: don't take the line if (i < n - 1 && k < 9) { if (dp[i + 1][j * 10 + k + 1] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = dp[i + 1][j * 10 + k + 1]; how[i][j * 10 + k] = k + 1; } } // Option 2: take the line if (i < n - 1 && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][(j - 1) * 10] < dp[i][j * 10 + k]) { dp[i][j * 10 + k] = cost + dp[i + 1][(j - 1) * 10]; how[i][j * 10 + k] = 0; } } } } } } int taken_lines_size = 0; float* taken_lines = malloc(sizeof(float)); int current_line_size = 1; float* current_line = malloc(sizeof(float)); i = 0; j = lines_left; k = 6; while (i < n - 1) { if (how[i][j * 10 + k] == 0) { // Chose to take the line if (current_line_size == 1) { current_line[0] = n - i - 1; } else { current_line = realloc(current_line, current_line_size * sizeof(float)); current_line[current_line_size - 1] = n - i - 1; } current_line_size++; if (current_line_size == 10) { taken_lines = realloc(taken_lines, (taken_lines_size + 10) * sizeof(float)); memcpy(&taken_lines[taken_lines_size], current_line, 10 * sizeof(float)); taken_lines_size += 10; current_line_size = 0; } i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } free(current_line); for (i = 0; i <= n; i++) { free(dp[i]); free(how[i]); } free(dp); free(how); return dp[0][lines_left * 10 + 6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
main.c:6: warning: "INFINITY" redefined
6 | #define INFINITY (1e9)
|
In file included from main.c:4:
/usr/include/math.h:91: note: this is the location of the previous definition
91 | # define INFINITY (__builtin_inff ())
|
main.c: In function 'solve_dp':
main.c:65:17: warning: implicit declaration of function 'memcpy' [-Wimplicit-function-declaration]
65 | memcpy(&taken_lines[taken_lines_size], current_line, 10 * sizeof(float));
| ^~~~~~
main.c:5:1: note: include '<string.h>' or provide a declaration of 'memcpy'
4 | #include <math.h>
+++ |+#include <string.h>
5 |
main.c:65:17: warning: incompatible implicit declaration of built-in function 'memcpy' [-Wbuiltin-declaration-mismatch]
65 | memcpy(&taken_lines[taken_lines_size], current_line, 10 * sizeof(float));
| ^~~~~~
main.c:65:17: note: include '<string.h>' or provide a declaration of 'memcpy'
main.sh: line 2: 16 Segmentation fault (core dumped) ./a.out
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a possible C translation of your Python code. Note that I've made some assumptions about the memory management and error checking, so you may need to adjust the code to fit your specific requirements.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INFINITY (1e9) float solve_dp(float* arr, int size, int lines_left) { int n = size; int i, j, k; float** dp = malloc((n + 1) * sizeof(float*)); int*** how = malloc((n + 1) * sizeof(int**)); for (i = 0; i <= n; i++) { dp[i] = malloc((lines_left + 1) * sizeof(float*)); how[i] = malloc((lines_left + 1) * sizeof(int**)); for (j = 0; j <= lines_left; j++) { dp[i][j] = calloc(10, sizeof(float)); how[i][j] = calloc(10, sizeof(int*)); for (k = 0; k < 10; k++) { how[i][j][k] = -1; } } } for (i = n; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } // Reconstruct the solution int taken_lines_size = 0; int* taken_lines = malloc(n * sizeof(int)); int taken_lines_index = 0; i = 0; j = lines_left; k = 6; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[taken_lines_index++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Free memory for (i = 0; i <= n; i++) { free(dp[i]); for (j = 0; j <= lines_left; j++) { free(how[i][j]); } free(how[i]); } free(dp); free(how); // Return the result return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INFINITY (1e9) float solve_dp(float* arr, int size, int lines_left) { int n = size; int i, j, k; float** dp = malloc((n + 1) * sizeof(float*)); int*** how = malloc((n + 1) * sizeof(int**)); for (i = 0; i <= n; i++) { dp[i] = malloc((lines_left + 1) * sizeof(float*)); how[i] = malloc((lines_left + 1) * sizeof(int**)); for (j = 0; j <= lines_left; j++) { dp[i][j] = calloc(10, sizeof(float)); how[i][j] = calloc(10, sizeof(int*)); for (k = 0; k < 10; k++) { how[i][j][k] = -1; } } } for (i = n; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } // Reconstruct the solution int taken_lines_size = 0; int* taken_lines = malloc(n * sizeof(int)); int taken_lines_index = 0; i = 0; j = lines_left; k = 6; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[taken_lines_index++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Free memory for (i = 0; i <= n; i++) { free(dp[i]); for (j = 0; j <= lines_left; j++) { free(how[i][j]); } free(how[i]); } free(dp); free(how); // Return the result return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INFINITY (1e9) float solve_dp(float* arr, int size, int lines_left) { int n = size; int i, j, k; float** dp = malloc((n + 1) * sizeof(float*)); int*** how = malloc((n + 1) * sizeof(int**)); for (i = 0; i <= n; i++) { dp[i] = malloc((lines_left + 1) * sizeof(float*)); how[i] = malloc((lines_left + 1) * sizeof(int**)); for (j = 0; j <= lines_left; j++) { dp[i][j] = calloc(10, sizeof(float)); how[i][j] = calloc(10, sizeof(int*)); for (k = 0; k < 10; k++) { how[i][j][k] = -1; } } } for (i = n; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } // Reconstruct the solution int taken_lines_size = 0; int* taken_lines = malloc(n * sizeof(int)); int taken_lines_index = 0; i = 0; j = lines_left; k = 6; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[taken_lines_index++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Free memory for (i = 0; i <= n; i++) { free(dp[i]); for (j = 0; j <= lines_left; j++) { free(how[i][j]); } free(how[i]); } free(dp); free(how); // Return the result return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
main.c:6: warning: "INFINITY" redefined
6 | #define INFINITY (1e9)
|
In file included from main.c:4:
/usr/include/math.h:91: note: this is the location of the previous definition
91 | # define INFINITY (__builtin_inff ())
|
main.c: In function 'solve_dp':
main.c:18:24: error: incompatible types when assigning to type 'float' from type 'void *'
18 | dp[i][j] = calloc(10, sizeof(float));
| ^~~~~~
main.c:30:29: error: subscripted value is neither array nor pointer nor vector
30 | dp[i][j][k] = 0;
| ^
main.c:34:41: error: subscripted value is neither array nor pointer nor vector
34 | if (dp[i + 1][j][k + 1] < dp[i][j][k]) {
| ^
main.c:34:59: error: subscripted value is neither array nor pointer nor vector
34 | if (dp[i + 1][j][k + 1] < dp[i][j][k]) {
| ^
main.c:35:37: error: subscripted value is neither array nor pointer nor vector
35 | dp[i][j][k] = dp[i + 1][j][k + 1];
| ^
main.c:35:55: error: subscripted value is neither array nor pointer nor vector
35 | dp[i][j][k] = dp[i + 1][j][k + 1];
| ^
main.c:43:52: error: subscripted value is neither array nor pointer nor vector
43 | if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) {
| ^
main.c:43:66: error: subscripted value is neither array nor pointer nor vector
43 | if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) {
| ^
main.c:44:37: error: subscripted value is neither array nor pointer nor vector
44 | dp[i][j][k] = cost + dp[i + 1][j - 1][0];
| ^
main.c:44:66: error: subscripted value is neither array nor pointer nor vector
44 | dp[i][j][k] = cost + dp[i + 1][j - 1][0];
| ^
main.c:82:29: error: subscripted value is neither array nor pointer nor vector
82 | return dp[0][lines_left][6];
| ^
main.sh: line 2: ./a.out: No such file or directory
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's the equivalent C code for the given Python program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | #include <stdlib.h> #include <stdio.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float **dp = malloc((n + 1) * sizeof(float *)); int **how = malloc((n + 1) * sizeof(int *)); for (int i = 0; i <= n; ++i) { dp[i] = malloc((lines_left + 1) * sizeof(float *)); how[i] = malloc((lines_left + 1) * sizeof(int *)); for (int j = 0; j <= lines_left; ++j) { dp[i][j] = calloc(10, sizeof(float)); how[i][j] = calloc(10, sizeof(int)); } } for (int i = n; i >= 0; --i) { for (int j = 0; j <= lines_left; ++j) { for (int k = 0; k < 10; ++k) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + powf(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines = 0; float *result = malloc(sizeof(float) * size); while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line result[taken_lines++] = (float)(n - i); i += 1; j -= 1; k = 0; } else { // Chose not to take the line i += 1; k += 1; } } float answer = dp[0][lines_left][6]; // Free allocated memory for (int i = 0; i <= n; ++i) { free(dp[i]); free(how[i]); } free(dp); free(how); free(result); return answer; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | #include <stdlib.h> #include <stdio.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float **dp = malloc((n + 1) * sizeof(float *)); int **how = malloc((n + 1) * sizeof(int *)); for (int i = 0; i <= n; ++i) { dp[i] = malloc((lines_left + 1) * sizeof(float *)); how[i] = malloc((lines_left + 1) * sizeof(int *)); for (int j = 0; j <= lines_left; ++j) { dp[i][j] = calloc(10, sizeof(float)); how[i][j] = calloc(10, sizeof(int)); } } for (int i = n; i >= 0; --i) { for (int j = 0; j <= lines_left; ++j) { for (int k = 0; k < 10; ++k) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + powf(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines = 0; float *result = malloc(sizeof(float) * size); while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line result[taken_lines++] = (float)(n - i); i += 1; j -= 1; k = 0; } else { // Chose not to take the line i += 1; k += 1; } } float answer = dp[0][lines_left][6]; // Free allocated memory for (int i = 0; i <= n; ++i) { free(dp[i]); free(how[i]); } free(dp); free(how); free(result); return answer; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #include <stdlib.h> #include <stdio.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float **dp = malloc((n + 1) * sizeof(float *)); int **how = malloc((n + 1) * sizeof(int *)); for (int i = 0; i <= n; ++i) { dp[i] = malloc((lines_left + 1) * sizeof(float *)); how[i] = malloc((lines_left + 1) * sizeof(int *)); for (int j = 0; j <= lines_left; ++j) { dp[i][j] = calloc(10, sizeof(float)); how[i][j] = calloc(10, sizeof(int)); } } for (int i = n; i >= 0; --i) { for (int j = 0; j <= lines_left; ++j) { for (int k = 0; k < 10; ++k) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + powf(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines = 0; float *result = malloc(sizeof(float) * size); while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line result[taken_lines++] = (float)(n - i); i += 1; j -= 1; k = 0; } else { // Chose not to take the line i += 1; k += 1; } } float answer = dp[0][lines_left][6]; // Free allocated memory for (int i = 0; i <= n; ++i) { free(dp[i]); free(how[i]); } free(dp); free(how); free(result); return answer; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
main.c: In function 'solve_dp':
main.c:15:24: error: incompatible types when assigning to type 'float' from type 'void *'
15 | dp[i][j] = calloc(10, sizeof(float));
| ^~~~~~
main.c:16:23: warning: assignment to 'int' from 'void *' makes integer from pointer without a cast [-Wint-conversion]
16 | how[i][j] = calloc(10, sizeof(int));
| ^
main.c:24:29: error: subscripted value is neither array nor pointer nor vector
24 | dp[i][j][k] = 0;
| ^
main.c:28:41: error: subscripted value is neither array nor pointer nor vector
28 | if (dp[i + 1][j][k + 1] < dp[i][j][k]) {
| ^
main.c:28:59: error: subscripted value is neither array nor pointer nor vector
28 | if (dp[i + 1][j][k + 1] < dp[i][j][k]) {
| ^
main.c:29:37: error: subscripted value is neither array nor pointer nor vector
29 | dp[i][j][k] = dp[i + 1][j][k + 1];
| ^
main.c:29:55: error: subscripted value is neither array nor pointer nor vector
29 | dp[i][j][k] = dp[i + 1][j][k + 1];
| ^
main.c:30:38: error: subscripted value is neither array nor pointer nor vector
30 | how[i][j][k] = k + 1; // Representing choosing not to take the line
| ^
main.c:37:52: error: subscripted value is neither array nor pointer nor vector
37 | if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) {
| ^
main.c:37:66: error: subscripted value is neither array nor pointer nor vector
37 | if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) {
| ^
main.c:38:37: error: subscripted value is neither array nor pointer nor vector
38 | dp[i][j][k] = cost + dp[i + 1][j - 1][0];
| ^
main.c:38:66: error: subscripted value is neither array nor pointer nor vector
38 | dp[i][j][k] = cost + dp[i + 1][j - 1][0];
| ^
main.c:39:38: error: subscripted value is neither array nor pointer nor vector
39 | how[i][j][k] = 0; // Representing choosing to take the line
| ^
main.c:52:22: error: subscripted value is neither array nor pointer nor vector
52 | if (how[i][j][k] == 0) { // Chose to take the line
| ^
main.c:63:37: error: subscripted value is neither array nor pointer nor vector
63 | float answer = dp[0][lines_left][6];
| ^
main.sh: line 2: ./a.out: No such file or directory
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here is a possible C implementation of the given Python code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | #include <stdlib.h> #include <math.h> #include <stdio.h> #define INFINITY (1e9) float solve_dp(float* arr, int size, int lines_left) { int n = size; int i, j, k; float** dp; int** how; // Allocate memory for dp and how arrays dp = (float**)malloc((n + 1) * sizeof(float*)); how = (int**)malloc((n + 1) * sizeof(int*)); for (i = 0; i <= n; i++) { dp[i] = (float*)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int*)malloc((lines_left + 1) * sizeof(int*)); for (j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (k = 0; k < 10; k++) { dp[i][j][k] = INFINITY; how[i][j][k] = -1; } } } // Initialize the base case for (k = 0; k < 10; k++) { if (lines_left == 0 && n == 0) { dp[n][lines_left][k] = 0; } } // Fill in the rest of the dp array for (i = n - 1; i >= 0; i--) { for (j = lines_left; j >= 0; j--) { for (k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } // Reconstruct the solution int taken_lines_size = 0; int* taken_lines = NULL; i = 0; j = lines_left; k = 6; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines_size++; taken_lines = (int*)realloc(taken_lines, taken_lines_size * sizeof(int)); taken_lines[taken_lines_size - 1] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Free memory and return the solution for (i = 0; i <= n; i++) { for (j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); if (taken_lines != NULL) { free(taken_lines); } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | #include <stdlib.h> #include <math.h> #include <stdio.h> #define INFINITY (1e9) float solve_dp(float* arr, int size, int lines_left) { int n = size; int i, j, k; float** dp; int** how; // Allocate memory for dp and how arrays dp = (float**)malloc((n + 1) * sizeof(float*)); how = (int**)malloc((n + 1) * sizeof(int*)); for (i = 0; i <= n; i++) { dp[i] = (float*)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int*)malloc((lines_left + 1) * sizeof(int*)); for (j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (k = 0; k < 10; k++) { dp[i][j][k] = INFINITY; how[i][j][k] = -1; } } } // Initialize the base case for (k = 0; k < 10; k++) { if (lines_left == 0 && n == 0) { dp[n][lines_left][k] = 0; } } // Fill in the rest of the dp array for (i = n - 1; i >= 0; i--) { for (j = lines_left; j >= 0; j--) { for (k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } // Reconstruct the solution int taken_lines_size = 0; int* taken_lines = NULL; i = 0; j = lines_left; k = 6; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines_size++; taken_lines = (int*)realloc(taken_lines, taken_lines_size * sizeof(int)); taken_lines[taken_lines_size - 1] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Free memory and return the solution for (i = 0; i <= n; i++) { for (j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); if (taken_lines != NULL) { free(taken_lines); } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | #include <stdlib.h> #include <math.h> #include <stdio.h> #define INFINITY (1e9) float solve_dp(float* arr, int size, int lines_left) { int n = size; int i, j, k; float** dp; int** how; // Allocate memory for dp and how arrays dp = (float**)malloc((n + 1) * sizeof(float*)); how = (int**)malloc((n + 1) * sizeof(int*)); for (i = 0; i <= n; i++) { dp[i] = (float*)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int*)malloc((lines_left + 1) * sizeof(int*)); for (j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (k = 0; k < 10; k++) { dp[i][j][k] = INFINITY; how[i][j][k] = -1; } } } // Initialize the base case for (k = 0; k < 10; k++) { if (lines_left == 0 && n == 0) { dp[n][lines_left][k] = 0; } } // Fill in the rest of the dp array for (i = n - 1; i >= 0; i--) { for (j = lines_left; j >= 0; j--) { for (k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } // Reconstruct the solution int taken_lines_size = 0; int* taken_lines = NULL; i = 0; j = lines_left; k = 6; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines_size++; taken_lines = (int*)realloc(taken_lines, taken_lines_size * sizeof(int)); taken_lines[taken_lines_size - 1] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Free memory and return the solution for (i = 0; i <= n; i++) { for (j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); if (taken_lines != NULL) { free(taken_lines); } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
main.c:6: warning: "INFINITY" redefined
6 | #define INFINITY (1e9)
|
In file included from main.c:3:
/usr/include/math.h:91: note: this is the location of the previous definition
91 | # define INFINITY (__builtin_inff ())
|
main.c: In function 'solve_dp':
main.c:21:24: error: incompatible types when assigning to type 'float' from type 'float *'
21 | dp[i][j] = (float*)malloc(10 * sizeof(float));
| ^
main.c:22:23: warning: assignment to 'int' from 'int *' makes integer from pointer without a cast [-Wint-conversion]
22 | how[i][j] = (int*)malloc(10 * sizeof(int));
| ^
main.c:24:25: error: subscripted value is neither array nor pointer nor vector
24 | dp[i][j][k] = INFINITY;
| ^
main.c:25:26: error: subscripted value is neither array nor pointer nor vector
25 | how[i][j][k] = -1;
| ^
main.c:33:30: error: subscripted value is neither array nor pointer nor vector
33 | dp[n][lines_left][k] = 0;
| ^
main.c:43:37: error: subscripted value is neither array nor pointer nor vector
43 | if (dp[i + 1][j][k + 1] < dp[i][j][k]) {
| ^
main.c:43:55: error: subscripted value is neither array nor pointer nor vector
43 | if (dp[i + 1][j][k + 1] < dp[i][j][k]) {
| ^
main.c:44:33: error: subscripted value is neither array nor pointer nor vector
44 | dp[i][j][k] = dp[i + 1][j][k + 1];
| ^
main.c:44:51: error: subscripted value is neither array nor pointer nor vector
44 | dp[i][j][k] = dp[i + 1][j][k + 1];
| ^
main.c:45:34: error: subscripted value is neither array nor pointer nor vector
45 | how[i][j][k] = k + 1;
| ^
main.c:52:48: error: subscripted value is neither array nor pointer nor vector
52 | if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) {
| ^
main.c:52:62: error: subscripted value is neither array nor pointer nor vector
52 | if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) {
| ^
main.c:53:33: error: subscripted value is neither array nor pointer nor vector
53 | dp[i][j][k] = cost + dp[i + 1][j - 1][0];
| ^
main.c:53:62: error: subscripted value is neither array nor pointer nor vector
53 | dp[i][j][k] = cost + dp[i + 1][j - 1][0];
| ^
main.c:54:34: error: subscripted value is neither array nor pointer nor vector
54 | how[i][j][k] = 0;
| ^
main.c:68:22: error: subscripted value is neither array nor pointer nor vector
68 | if (how[i][j][k] == 0) { // Chose to take the line
| ^
main.c:84:23: error: incompatible type for argument 1 of 'free'
84 | free(dp[i][j]);
| ~~~~~^~~
| |
| float
In file included from main.c:2:
/usr/include/stdlib.h:555:25: note: expected 'void *' but argument is of type 'float'
555 | extern void free (void *__ptr) __THROW;
| ~~~~~~^~~~~
main.c:85:24: warning: passing argument 1 of 'free' makes pointer from integer without a cast [-Wint-conversion]
85 | free(how[i][j]);
| ~~~~~~^~~
| |
| int
In file included from main.c:2:
/usr/include/stdlib.h:555:25: note: expected 'void *' but argument is of type 'int'
555 | extern void free (void *__ptr) __THROW;
| ~~~~~~^~~~~
main.c:95:29: error: subscripted value is neither array nor pointer nor vector
95 | return dp[0][lines_left][6];
| ^
main.sh: line 2: ./a.out: No such file or directory
Testing if the previous output contains the string All tests passed
: False