Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
To rewrite the provided Python program in C, you'll need to adjust for several differences between the two languages, such as the way arrays and memory allocation work. In C, there's no built-in support for dynamic multidimensional arrays, so you'll have to manage memory allocation and deallocation manually. Additionally, C does not have a direct equivalent of Python's lists, so we'll use dynamically allocated arrays instead. Given the task, the type signature of the function was specified as `float solve_dp(float* arr, int size, int lines_left)`, which suggests that the original `graph` parameter, an array of floats, is provided along with its size. Let's proceed with the C version of the program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 float solve_dp(float* arr, int size, int lines_left) { int n = size; float*** dp = (float***)malloc((n + 1) * sizeof(float**)); int*** how = (int***)malloc((n + 1) * sizeof(int**)); int i, j, k; // Allocate memory for dp and how arrays for (i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (k = 0; k < 10; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } // Logic translated from Python to C for (i = n; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == n && j == 0) dp[i][j][k] = 0; else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } float result = dp[0][lines_left][6]; // Free allocated memory for (i = 0; i <= n; i++) { for (j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int main() { float arr[] = {10, 20, 30}; // Example array int size = sizeof(arr) / sizeof(arr[0]); // Calculate size of the array int lines_left = 2; float result = solve_dp(arr, size, lines_left); printf("Minimum Cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 float solve_dp(float* arr, int size, int lines_left) { int n = size; float*** dp = (float***)malloc((n + 1) * sizeof(float**)); int*** how = (int***)malloc((n + 1) * sizeof(int**)); int i, j, k; // Allocate memory for dp and how arrays for (i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (k = 0; k < 10; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } // Logic translated from Python to C for (i = n; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == n && j == 0) dp[i][j][k] = 0; else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } float result = dp[0][lines_left][6]; // Free allocated memory for (i = 0; i <= n; i++) { for (j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int main() { float arr[] = {10, 20, 30}; // Example array int size = sizeof(arr) / sizeof(arr[0]); // Calculate size of the array int lines_left = 2; float result = solve_dp(arr, size, lines_left); printf("Minimum Cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 float solve_dp(float* arr, int size, int lines_left) { int n = size; float*** dp = (float***)malloc((n + 1) * sizeof(float**)); int*** how = (int***)malloc((n + 1) * sizeof(int**)); int i, j, k; // Allocate memory for dp and how arrays for (i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (k = 0; k < 10; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } // Logic translated from Python to C for (i = n; i >= 0; i--) { for (j = 0; j <= lines_left; j++) { for (k = 0; k < 10; k++) { if (i == n && j == 0) dp[i][j][k] = 0; else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } float result = dp[0][lines_left][6]; // Free allocated memory for (i = 0; i <= n; i++) { for (j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int __delete_this__main() { float arr[] = {10, 20, 30}; // Example array int size = sizeof(arr) / sizeof(arr[0]); // Calculate size of the array int lines_left = 2; float result = solve_dp(arr, size, lines_left); printf("Minimum Cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Rewriting the given Python dynamic programming solution into C requires careful consideration of memory allocation for the 3D arrays, handling dynamic array sizes, and ensuring that the type signatures match the requirement. Here's how you can implement the given algorithm in C, adhering to the specified type signature `float solve_dp(float* arr, int size, int lines_left)`:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 #define MAXLINES 10 // Assuming a maximum of 10 lines as in the Python code // Function to solve the dynamic programming problem float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][MAXLINES]; int how[n + 1][lines_left + 1][MAXLINES]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAXLINES; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } // Fill dp and how arrays for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAXLINES; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } // The answer to the problem is in dp[0][lines_left][6] return dp[0][lines_left][6]; } int main() { float arr[] = {10, 20, 30}; // Example input int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 2; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 #define MAXLINES 10 // Assuming a maximum of 10 lines as in the Python code // Function to solve the dynamic programming problem float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][MAXLINES]; int how[n + 1][lines_left + 1][MAXLINES]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAXLINES; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } // Fill dp and how arrays for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAXLINES; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } // The answer to the problem is in dp[0][lines_left][6] return dp[0][lines_left][6]; } int main() { float arr[] = {10, 20, 30}; // Example input int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 2; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 #define MAXLINES 10 // Assuming a maximum of 10 lines as in the Python code // Function to solve the dynamic programming problem float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][MAXLINES]; int how[n + 1][lines_left + 1][MAXLINES]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAXLINES; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } // Fill dp and how arrays for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAXLINES; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } // The answer to the problem is in dp[0][lines_left][6] return dp[0][lines_left][6]; } int __delete_this__main() { float arr[] = {10, 20, 30}; // Example input int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 2; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Converting the given Python program into C requires several adjustments due to the differences in how the two languages manage memory and data structures. In the Python code, multidimensional lists are used, which must be replaced with equivalent structures in C, such as manually managed arrays. Additionally, the Python code uses list comprehensions and dynamic array sizes, which C does not support in the same way. Here's how you could rewrite the given Python program in C:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* graph, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialization for (int i = 0; i <= n; ++i) { for (int j = 0; j <= lines_left; ++j) { for (int k = 0; k < 10; ++k) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } for (int i = n; i >= 0; --i) { for (int j = 0; j <= lines_left; ++j) { for (int k = 0; k < 10; ++k) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = graph[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } return dp[0][lines_left][6]; } int main() { // Example usage float graph[] = {1.0, 2.0, 3.0}; // Example graph costs int size = sizeof(graph) / sizeof(graph[0]); int lines_left = 2; float result = solve_dp(graph, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* graph, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialization for (int i = 0; i <= n; ++i) { for (int j = 0; j <= lines_left; ++j) { for (int k = 0; k < 10; ++k) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } for (int i = n; i >= 0; --i) { for (int j = 0; j <= lines_left; ++j) { for (int k = 0; k < 10; ++k) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = graph[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } return dp[0][lines_left][6]; } int main() { // Example usage float graph[] = {1.0, 2.0, 3.0}; // Example graph costs int size = sizeof(graph) / sizeof(graph[0]); int lines_left = 2; float result = solve_dp(graph, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* graph, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialization for (int i = 0; i <= n; ++i) { for (int j = 0; j <= lines_left; ++j) { for (int k = 0; k < 10; ++k) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } for (int i = n; i >= 0; --i) { for (int j = 0; j <= lines_left; ++j) { for (int k = 0; k < 10; ++k) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = graph[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } return dp[0][lines_left][6]; } int __delete_this__main() { // Example usage float graph[] = {1.0, 2.0, 3.0}; // Example graph costs int size = sizeof(graph) / sizeof(graph[0]); int lines_left = 2; float result = solve_dp(graph, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
To convert the given Python program into C, we need to manage dynamic memory allocation for the multi-dimensional arrays ourselves since C does not have built-in support for lists or dynamic arrays as Python does. Here's how you could rewrite the given Python program in C:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 float solve_dp(float* graph, int size, int lines_left) { int n = size; float*** dp = (float***)malloc((n + 1) * sizeof(float**)); int*** how = (int***)malloc((n + 1) * sizeof(int**)); for (int i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = graph[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } float result = dp[0][lines_left][6]; // Free memory for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int main() { float graph[] = {10.0, 20.0, 30.0}; // Example graph int size = sizeof(graph) / sizeof(graph[0]); int lines_left = 2; float result = solve_dp(graph, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 float solve_dp(float* graph, int size, int lines_left) { int n = size; float*** dp = (float***)malloc((n + 1) * sizeof(float**)); int*** how = (int***)malloc((n + 1) * sizeof(int**)); for (int i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = graph[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } float result = dp[0][lines_left][6]; // Free memory for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int main() { float graph[] = {10.0, 20.0, 30.0}; // Example graph int size = sizeof(graph) / sizeof(graph[0]); int lines_left = 2; float result = solve_dp(graph, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 float solve_dp(float* graph, int size, int lines_left) { int n = size; float*** dp = (float***)malloc((n + 1) * sizeof(float**)); int*** how = (int***)malloc((n + 1) * sizeof(int**)); for (int i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = graph[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } float result = dp[0][lines_left][6]; // Free memory for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int __delete_this__main() { float graph[] = {10.0, 20.0, 30.0}; // Example graph int size = sizeof(graph) / sizeof(graph[0]); int lines_left = 2; float result = solve_dp(graph, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Below is the C version of the provided Python program. It includes the function `solve_dp(float* arr, int size, int lines_left)` that computes the solution based on the dynamic programming approach described in the Python code. Since C does not have native support for multidimensional arrays with variable size or lists, we'll need to manage memory manually for the DP and decision tracking arrays.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 #define MAX_LINES 10 // Adjust based on the maximum lines_left + 1 #define MAX_N 1000 // Adjust based on the maximum size of the graph float dp[MAX_N + 1][MAX_LINES][10]; int how[MAX_N + 1][MAX_LINES][10]; float solve_dp(float* arr, int size, int lines_left) { int n = size; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Not taking the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Taking the line } } } } } } return dp[0][lines_left][6]; } int main() { float graph[] = {10, 20, 30}; // Example graph costs int size = sizeof(graph) / sizeof(graph[0]); int lines_left = 2; // Example value float result = solve_dp(graph, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 #define MAX_LINES 10 // Adjust based on the maximum lines_left + 1 #define MAX_N 1000 // Adjust based on the maximum size of the graph float dp[MAX_N + 1][MAX_LINES][10]; int how[MAX_N + 1][MAX_LINES][10]; float solve_dp(float* arr, int size, int lines_left) { int n = size; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Not taking the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Taking the line } } } } } } return dp[0][lines_left][6]; } int main() { float graph[] = {10, 20, 30}; // Example graph costs int size = sizeof(graph) / sizeof(graph[0]); int lines_left = 2; // Example value float result = solve_dp(graph, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define INF 1e9 #define MAX_LINES 10 // Adjust based on the maximum lines_left + 1 #define MAX_N 1000 // Adjust based on the maximum size of the graph float dp[MAX_N + 1][MAX_LINES][10]; int how[MAX_N + 1][MAX_LINES][10]; float solve_dp(float* arr, int size, int lines_left) { int n = size; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = INF; how[i][j][k] = -1; } } } for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Not taking the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Taking the line } } } } } } return dp[0][lines_left][6]; } int __delete_this__main() { float graph[] = {10, 20, 30}; // Example graph costs int size = sizeof(graph) / sizeof(graph[0]); int lines_left = 2; // Example value float result = solve_dp(graph, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got 105 instead of 11290.
Testing if the previous output contains the string All tests passed
: False