Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float taken_lines[n]; int idx = 0; while (i < n) { if (how[i][j][k] == 0) { taken_lines[idx++] = n - i; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float taken_lines[n]; int idx = 0; while (i < n) { if (how[i][j][k] == 0) { taken_lines[idx++] = n - i; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float taken_lines[n]; int idx = 0; while (i < n) { if (how[i][j][k] == 0) { taken_lines[idx++] = n - i; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got -2147483648 instead of 11290.
main.c: In function 'solve_dp':
main.c:24:47: warning: implicit declaration of function 'pow' [-Wimplicit-function-declaration]
24 | float cost = arr[i] + pow((k - 8), 2);
| ^~~
main.c:1:1: note: include '<math.h>' or provide a declaration of 'pow'
+++ |+#include <math.h>
1 |
main.c:24:47: warning: incompatible implicit declaration of built-in function 'pow' [-Wbuiltin-declaration-mismatch]
24 | float cost = arr[i] + pow((k - 8), 2);
| ^~~
main.c:24:47: note: include '<math.h>' or provide a declaration of 'pow'
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | #include <stdio.h> #include <stdlib.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float taken_lines[n]; int idx = 0; while (i < n) { if (how[i][j][k] == 0) { taken_lines[idx++] = n - i; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | #include <stdio.h> #include <stdlib.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float taken_lines[n]; int idx = 0; while (i < n) { if (how[i][j][k] == 0) { taken_lines[idx++] = n - i; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | #include <stdio.h> #include <stdlib.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float taken_lines[n]; int idx = 0; while (i < n) { if (how[i][j][k] == 0) { taken_lines[idx++] = n - i; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got -2147483648 instead of 11290.
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | float solve_dp(float* graph, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for(int i = n; i >= 0; i--) { for(int j = 0; j <= lines_left; j++) { for(int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = graph[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float taken_lines[n]; int index = 0; while (i < n) { if (how[i][j][k] == 0) { taken_lines[index++] = n - i; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | float solve_dp(float* graph, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for(int i = n; i >= 0; i--) { for(int j = 0; j <= lines_left; j++) { for(int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = graph[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float taken_lines[n]; int index = 0; while (i < n) { if (how[i][j][k] == 0) { taken_lines[index++] = n - i; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | float solve_dp(float* graph, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for(int i = n; i >= 0; i--) { for(int j = 0; j <= lines_left; j++) { for(int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < n && j > 0) { float cost = graph[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float taken_lines[n]; int index = 0; while (i < n) { if (how[i][j][k] == 0) { taken_lines[index++] = n - i; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got -2147483648 instead of 11290.
main.c: In function 'solve_dp':
main.c:24:49: warning: implicit declaration of function 'pow' [-Wimplicit-function-declaration]
24 | float cost = graph[i] + pow((k - 8), 2);
| ^~~
main.c:1:1: note: include '<math.h>' or provide a declaration of 'pow'
+++ |+#include <math.h>
1 |
main.c:24:49: warning: incompatible implicit declaration of built-in function 'pow' [-Wbuiltin-declaration-mismatch]
24 | float cost = graph[i] + pow((k - 8), 2);
| ^~~
main.c:24:49: note: include '<math.h>' or provide a declaration of 'pow'
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #include <stdio.h> #include <stdlib.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n+1][lines_left+1][10]; int how[n+1][lines_left+1][10]; for(int i = n; i >= 0; i--) { for(int j = 0; j <= lines_left; j++) { for(int k = 0; k < 10; k++) { if(i == n && j == 0) { dp[i][j][k] = 0; } else { if(i < n && k < 9) { if(dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if(i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if(cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; while(i < n) { if(how[i][j][k] == 0) { i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #include <stdio.h> #include <stdlib.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n+1][lines_left+1][10]; int how[n+1][lines_left+1][10]; for(int i = n; i >= 0; i--) { for(int j = 0; j <= lines_left; j++) { for(int k = 0; k < 10; k++) { if(i == n && j == 0) { dp[i][j][k] = 0; } else { if(i < n && k < 9) { if(dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if(i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if(cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; while(i < n) { if(how[i][j][k] == 0) { i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | #include <stdio.h> #include <stdlib.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n+1][lines_left+1][10]; int how[n+1][lines_left+1][10]; for(int i = n; i >= 0; i--) { for(int j = 0; j <= lines_left; j++) { for(int k = 0; k < 10; k++) { if(i == n && j == 0) { dp[i][j][k] = 0; } else { if(i < n && k < 9) { if(dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if(i < n && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if(cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; while(i < n) { if(how[i][j][k] == 0) { i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got 0 instead of 11290.
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #include <stdio.h> #include <stdlib.h> float solve_dp(float* graph, int n, int lines_left) { float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = graph[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float result = dp[0][lines_left][6]; return result; } int main() { float graph[] = {1.0, 2.0, 3.0, 4.0, 5.0}; // example graph data int n = 5; // size of the graph int lines_left = 3; // example number of lines left float result = solve_dp(graph, n, lines_left); printf("Result: %f\n", result); return 0; } |
1 |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | #include <stdio.h> #include <stdlib.h> float solve_dp(float* graph, int n, int lines_left) { float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = graph[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float result = dp[0][lines_left][6]; return result; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include <stdio.h> #include <stdlib.h> float solve_dp(float* graph, int n, int lines_left) { float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } if (i < n && j > 0) { float cost = graph[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } int i = 0, j = lines_left, k = 6; float result = dp[0][lines_left][6]; return result; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got -2147483648 instead of 11290.
main.c: In function 'solve_dp':
main.c:22:49: warning: implicit declaration of function 'pow' [-Wimplicit-function-declaration]
22 | float cost = graph[i] + pow((k - 8), 2);
| ^~~
main.c:3:1: note: include '<math.h>' or provide a declaration of 'pow'
2 | #include <stdlib.h>
+++ |+#include <math.h>
3 |
main.c:22:49: warning: incompatible implicit declaration of built-in function 'pow' [-Wbuiltin-declaration-mismatch]
22 | float cost = graph[i] + pow((k - 8), 2);
| ^~~
main.c:22:49: note: include '<math.h>' or provide a declaration of 'pow'
Testing if the previous output contains the string All tests passed
: False