Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* graph, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = size; i >= 0; i--) { for (int j = lines_left; j >= 0; j--) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { float option1 = dp[i + 1][j][k + 1]; float option2 = dp[i + 1][j - 1][0]; if (i < size && k < 9 && option1 < option2) { dp[i][j][k] = option1; how[i][j][k] = k + 1; } else if (i < size && j > 0 && option2 < option1) { dp[i][j][k] = graph[i] + pow(k - 8, 2) + option2; how[i][j][k] = 0; } else { dp[i][j][k] = option1; how[i][j][k] = k + 1; } } } } } int taken_lines[size]; int index = 0; int i = 0; int j = lines_left; int k = 6; while (i < size) { if (how[i][j][k] == 0) { taken_lines[index] = size - i; index++; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* graph, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = size; i >= 0; i--) { for (int j = lines_left; j >= 0; j--) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { float option1 = dp[i + 1][j][k + 1]; float option2 = dp[i + 1][j - 1][0]; if (i < size && k < 9 && option1 < option2) { dp[i][j][k] = option1; how[i][j][k] = k + 1; } else if (i < size && j > 0 && option2 < option1) { dp[i][j][k] = graph[i] + pow(k - 8, 2) + option2; how[i][j][k] = 0; } else { dp[i][j][k] = option1; how[i][j][k] = k + 1; } } } } } int taken_lines[size]; int index = 0; int i = 0; int j = lines_left; int k = 6; while (i < size) { if (how[i][j][k] == 0) { taken_lines[index] = size - i; index++; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* graph, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = size; i >= 0; i--) { for (int j = lines_left; j >= 0; j--) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { float option1 = dp[i + 1][j][k + 1]; float option2 = dp[i + 1][j - 1][0]; if (i < size && k < 9 && option1 < option2) { dp[i][j][k] = option1; how[i][j][k] = k + 1; } else if (i < size && j > 0 && option2 < option1) { dp[i][j][k] = graph[i] + pow(k - 8, 2) + option2; how[i][j][k] = 0; } else { dp[i][j][k] = option1; how[i][j][k] = k + 1; } } } } } int taken_lines[size]; int index = 0; int i = 0; int j = lines_left; int k = 6; while (i < size) { if (how[i][j][k] == 0) { taken_lines[index] = size - i; index++; i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got -2147483648 instead of 11290.
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | #include <stdio.h> #include <stdlib.h> #include <limits.h> float solve_dp(float* arr, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = 0; i <= size; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } dp[size][0][6] = 0; for (int i = size - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | #include <stdio.h> #include <stdlib.h> #include <limits.h> float solve_dp(float* arr, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = 0; i <= size; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } dp[size][0][6] = 0; for (int i = size - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #include <stdio.h> #include <stdlib.h> #include <limits.h> float solve_dp(float* arr, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = 0; i <= size; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } dp[size][0][6] = 0; for (int i = size - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
main.c: In function 'solve_dp':
main.c:13:31: error: 'FLT_MAX' undeclared (first use in this function)
13 | dp[i][j][k] = FLT_MAX;
| ^~~~~~~
main.c:5:1: note: 'FLT_MAX' is defined in header '<float.h>'; did you forget to '#include <float.h>'?
4 | #include <limits.h>
+++ |+#include <float.h>
5 |
main.c:13:31: note: each undeclared identifier is reported only once for each function it appears in
13 | dp[i][j][k] = FLT_MAX;
| ^~~~~~~
main.sh: line 2: ./a.out: No such file or directory
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = size; i >= 0; i--) { for (int j = lines_left; j >= 0; j--) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = size; i >= 0; i--) { for (int j = lines_left; j >= 0; j--) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = size; i >= 0; i--) { for (int j = lines_left; j >= 0; j--) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got -3565 instead of 11290.
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = size; i >= 0; i--) { for (int j = lines_left; j >= 0; j--) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = size; i >= 0; i--) { for (int j = lines_left; j >= 0; j--) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { float dp[size + 1][lines_left + 1][10]; int how[size + 1][lines_left + 1][10]; for (int i = size; i >= 0; i--) { for (int j = lines_left; j >= 0; j--) { for (int k = 0; k < 10; k++) { if (i == size && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got -2147483648 instead of 11290.
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { float*** dp = malloc((size + 1) * sizeof(float**)); int*** how = malloc((size + 1) * sizeof(int**)); for (int i = 0; i <= size; i++) { dp[i] = malloc((lines_left + 1) * sizeof(float*)); how[i] = malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = malloc(10 * sizeof(float)); how[i][j] = malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } dp[size][0][6] = 0; for (int i = size - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } int i = 0, j = lines_left, k = 6; int* taken_lines = malloc(size * sizeof(int)); int taken_lines_count = 0; while (i < size) { if (how[i][j][k] == 0) { taken_lines[taken_lines_count++] = size - i; i++; j--; k = 0; } else { i++; k++; } } float result = dp[0][lines_left][6]; for (int i = 0; i < size + 1; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); free(taken_lines); return result; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { float*** dp = malloc((size + 1) * sizeof(float**)); int*** how = malloc((size + 1) * sizeof(int**)); for (int i = 0; i <= size; i++) { dp[i] = malloc((lines_left + 1) * sizeof(float*)); how[i] = malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = malloc(10 * sizeof(float)); how[i][j] = malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } dp[size][0][6] = 0; for (int i = size - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } int i = 0, j = lines_left, k = 6; int* taken_lines = malloc(size * sizeof(int)); int taken_lines_count = 0; while (i < size) { if (how[i][j][k] == 0) { taken_lines[taken_lines_count++] = size - i; i++; j--; k = 0; } else { i++; k++; } } float result = dp[0][lines_left][6]; for (int i = 0; i < size + 1; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); free(taken_lines); return result; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | #include <stdio.h> #include <stdlib.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { float*** dp = malloc((size + 1) * sizeof(float**)); int*** how = malloc((size + 1) * sizeof(int**)); for (int i = 0; i <= size; i++) { dp[i] = malloc((lines_left + 1) * sizeof(float*)); how[i] = malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = malloc(10 * sizeof(float)); how[i][j] = malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } dp[size][0][6] = 0; for (int i = size - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < size && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } } // Option 2: take the line if (i < size && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } int i = 0, j = lines_left, k = 6; int* taken_lines = malloc(size * sizeof(int)); int taken_lines_count = 0; while (i < size) { if (how[i][j][k] == 0) { taken_lines[taken_lines_count++] = size - i; i++; j--; k = 0; } else { i++; k++; } } float result = dp[0][lines_left][6]; for (int i = 0; i < size + 1; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); free(taken_lines); return result; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got 1000000000 instead of 11290.
Testing if the previous output contains the string All tests passed
: False