Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | #include <stdio.h> #include <stdlib.h> #include <math.h> #include <limits.h> #include <float.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; // Dynamic programming table float*** dp = (float***)malloc((n + 1) * sizeof(float**)); for (int i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); for (int k = 0; k < 10; k++) { dp[i][j][k] = FLT_MAX; } } } // How table to track decisions int*** how = (int***)malloc((n + 1) * sizeof(int**)); for (int i = 0; i <= n; i++) { how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { how[i][j] = (int*)malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { how[i][j][k] = -1; } } } // DP base case for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: Don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } // Option 2: Take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; // int taken_lines[lines_left]; // int taken_lines_index = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line // taken_lines[taken_lines_index++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } float result = dp[0][lines_left][6]; // Free memory for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | #include <stdio.h> #include <stdlib.h> #include <math.h> #include <limits.h> #include <float.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; // Dynamic programming table float*** dp = (float***)malloc((n + 1) * sizeof(float**)); for (int i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); for (int k = 0; k < 10; k++) { dp[i][j][k] = FLT_MAX; } } } // How table to track decisions int*** how = (int***)malloc((n + 1) * sizeof(int**)); for (int i = 0; i <= n; i++) { how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { how[i][j] = (int*)malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { how[i][j][k] = -1; } } } // DP base case for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: Don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } // Option 2: Take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; // int taken_lines[lines_left]; // int taken_lines_index = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line // taken_lines[taken_lines_index++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } float result = dp[0][lines_left][6]; // Free memory for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | #include <stdio.h> #include <stdlib.h> #include <math.h> #include <limits.h> #include <float.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; // Dynamic programming table float*** dp = (float***)malloc((n + 1) * sizeof(float**)); for (int i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); for (int k = 0; k < 10; k++) { dp[i][j][k] = FLT_MAX; } } } // How table to track decisions int*** how = (int***)malloc((n + 1) * sizeof(int**)); for (int i = 0; i <= n; i++) { how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { how[i][j] = (int*)malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { how[i][j][k] = -1; } } } // DP base case for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: Don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } // Option 2: Take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; // int taken_lines[lines_left]; // int taken_lines_index = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line // taken_lines[taken_lines_index++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } float result = dp[0][lines_left][6]; // Free memory for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int __delete_this__main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | #include <stdio.h> #include <stdlib.h> #include <math.h> #include <limits.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; // Allocate memory for dp and how arrays float*** dp = (float***)malloc((n + 1) * sizeof(float**)); int*** how = (int***)malloc((n + 1) * sizeof(int**)); for (int i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; // Initialize dp to a large value how[i][j][k] = -1; // Initialize how as -1 } } } // Base case for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; // int taken_lines[lines_left]; // Assuming maximum lines taken is lines_left // int taken_lines_count = 0; // Instead of storing the taken lines, we can just print them directly while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line // taken_lines[taken_lines_count++] = n - i; printf("Line taken at index: %d\n", n - i); // Print the index of the taken line i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } float result = dp[0][lines_left][6]; // Free the allocated memory for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int main() { float arr[] = {1.2, 3.4, 5.6, 7.8, 9.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | #include <stdio.h> #include <stdlib.h> #include <math.h> #include <limits.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; // Allocate memory for dp and how arrays float*** dp = (float***)malloc((n + 1) * sizeof(float**)); int*** how = (int***)malloc((n + 1) * sizeof(int**)); for (int i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; // Initialize dp to a large value how[i][j][k] = -1; // Initialize how as -1 } } } // Base case for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; // int taken_lines[lines_left]; // Assuming maximum lines taken is lines_left // int taken_lines_count = 0; // Instead of storing the taken lines, we can just print them directly while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line // taken_lines[taken_lines_count++] = n - i; printf("Line taken at index: %d\n", n - i); // Print the index of the taken line i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } float result = dp[0][lines_left][6]; // Free the allocated memory for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int main() { float arr[] = {1.2, 3.4, 5.6, 7.8, 9.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | #include <stdio.h> #include <stdlib.h> #include <math.h> #include <limits.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; // Allocate memory for dp and how arrays float*** dp = (float***)malloc((n + 1) * sizeof(float**)); int*** how = (int***)malloc((n + 1) * sizeof(int**)); for (int i = 0; i <= n; i++) { dp[i] = (float**)malloc((lines_left + 1) * sizeof(float*)); how[i] = (int**)malloc((lines_left + 1) * sizeof(int*)); for (int j = 0; j <= lines_left; j++) { dp[i][j] = (float*)malloc(10 * sizeof(float)); how[i][j] = (int*)malloc(10 * sizeof(int)); for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; // Initialize dp to a large value how[i][j][k] = -1; // Initialize how as -1 } } } // Base case for (int i = n; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { if (i == n && j == 0) { dp[i][j][k] = 0; } else { // Option 1: don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; // int taken_lines[lines_left]; // Assuming maximum lines taken is lines_left // int taken_lines_count = 0; // Instead of storing the taken lines, we can just print them directly while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line // taken_lines[taken_lines_count++] = n - i; printf("Line taken at index: %d\n", n - i); // Print the index of the taken line i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } float result = dp[0][lines_left][6]; // Free the allocated memory for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { free(dp[i][j]); free(how[i][j]); } free(dp[i]); free(how[i]); } free(dp); free(how); return result; } int __delete_this__main() { float arr[] = {1.2, 3.4, 5.6, 7.8, 9.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Line taken at index: 100
Line taken at index: 99
Line taken at index: 98
Line taken at index: 97
Line taken at index: 96
Line taken at index: 95
Line taken at index: 94
Line taken at index: 93
Line taken at index: 92
Line taken at index: 91
Line taken at index: 90
Line taken at index: 89
Line taken at index: 88
Line taken at index: 87
Line taken at index: 86
Line taken at index: 85
Line taken at index: 84
Line taken at index: 83
Line taken at index: 82
Line taken at index: 81
Line taken at index: 80
Line taken at index: 79
Line taken at index: 78
Line taken at index: 77
Line taken at index: 76
Line taken at index: 75
Line taken at index: 74
Line taken at index: 73
Line taken at index: 72
Line taken at index: 71
Line taken at index: 70
Line taken at index: 69
Line taken at index: 68
Line taken at index: 67
Line taken at index: 66
Line taken at index: 65
Line taken at index: 64
Line taken at index: 63
Line taken at index: 62
Line taken at index: 61
Line taken at index: 60
Line taken at index: 59
Line taken at index: 58
Line taken at index: 57
Line taken at index: 56
Line taken at index: 55
Line taken at index: 54
Line taken at index: 53
Line taken at index: 52
Line taken at index: 51
Line taken at index: 50
Line taken at index: 49
Line taken at index: 48
Line taken at index: 47
Line taken at index: 46
Line taken at index: 45
Line taken at index: 44
Line taken at index: 43
Line taken at index: 42
Line taken at index: 41
Line taken at index: 40
Line taken at index: 39
Line taken at index: 38
Line taken at index: 37
Line taken at index: 36
Line taken at index: 35
Line taken at index: 34
Line taken at index: 33
Line taken at index: 32
Line taken at index: 31
Line taken at index: 30
Line taken at index: 29
Line taken at index: 28
Line taken at index: 27
Line taken at index: 26
Line taken at index: 25
Line taken at index: 24
Line taken at index: 23
Line taken at index: 22
Line taken at index: 21
Line taken at index: 20
Line taken at index: 19
Line taken at index: 18
Line taken at index: 17
Line taken at index: 16
Line taken at index: 15
Line taken at index: 14
Line taken at index: 13
Line taken at index: 12
Line taken at index: 11
Line taken at index: 10
Line taken at index: 9
Line taken at index: 8
Line taken at index: 7
Line taken at index: 6
Line taken at index: 5
Line taken at index: 4
Line taken at index: 3
Line taken at index: 2
Line taken at index: 1
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define MIN(a, b) (((a) < (b)) ? (a) : (b)) float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case for (int k = 0; k < 10; k++) { dp[n][0][k] = 0; } // Fill the DP table for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: Don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } // Option 2: Take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; // int taken_lines[lines_left]; // Uncomment to store taken lines // int taken_lines_count = 0; // Uncomment to store taken lines count while (i < n) { if (how[i][j][k] == 0) { // taken_lines[taken_lines_count++] = n - i; // Uncomment to store taken lines i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define MIN(a, b) (((a) < (b)) ? (a) : (b)) float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case for (int k = 0; k < 10; k++) { dp[n][0][k] = 0; } // Fill the DP table for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: Don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } // Option 2: Take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; // int taken_lines[lines_left]; // Uncomment to store taken lines // int taken_lines_count = 0; // Uncomment to store taken lines count while (i < n) { if (how[i][j][k] == 0) { // taken_lines[taken_lines_count++] = n - i; // Uncomment to store taken lines i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | #include <stdio.h> #include <stdlib.h> #include <math.h> #define MIN(a, b) (((a) < (b)) ? (a) : (b)) float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case for (int k = 0; k < 10; k++) { dp[n][0][k] = 0; } // Fill the DP table for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: Don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } // Option 2: Take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; // int taken_lines[lines_left]; // Uncomment to store taken lines // int taken_lines_count = 0; // Uncomment to store taken lines count while (i < n) { if (how[i][j][k] == 0) { // taken_lines[taken_lines_count++] = n - i; // Uncomment to store taken lines i++; j--; k = 0; } else { i++; k++; } } return dp[0][lines_left][6]; } int __delete_this__main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | #include <stdio.h> #include <stdlib.h> #include <math.h> #include <limits.h> #define MIN(a,b) (((a)<(b))?(a):(b)) float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp with a large value for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = INT_MAX; } } } // Initialize how as -1 indicating no decision made for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { how[i][j][k] = -1; } } } // Base case for (int k = 0; k < 10; k++) { dp[n][0][k] = 0; } // Fill the dp table for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution (optional) /* int i = 0, j = lines_left, k = 6; while (i < n) { if (how[i][j][k] == 0) { printf("Line %d taken\n", n - i); i++; j--; k = 0; } else { i++; k++; } } */ return dp[0][lines_left][6]; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | #include <stdio.h> #include <stdlib.h> #include <math.h> #include <limits.h> #define MIN(a,b) (((a)<(b))?(a):(b)) float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp with a large value for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = INT_MAX; } } } // Initialize how as -1 indicating no decision made for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { how[i][j][k] = -1; } } } // Base case for (int k = 0; k < 10; k++) { dp[n][0][k] = 0; } // Fill the dp table for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution (optional) /* int i = 0, j = lines_left, k = 6; while (i < n) { if (how[i][j][k] == 0) { printf("Line %d taken\n", n - i); i++; j--; k = 0; } else { i++; k++; } } */ return dp[0][lines_left][6]; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | #include <stdio.h> #include <stdlib.h> #include <math.h> #include <limits.h> #define MIN(a,b) (((a)<(b))?(a):(b)) float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp with a large value for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = INT_MAX; } } } // Initialize how as -1 indicating no decision made for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { how[i][j][k] = -1; } } } // Base case for (int k = 0; k < 10; k++) { dp[n][0][k] = 0; } // Fill the dp table for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow((k - 8), 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution (optional) /* int i = 0, j = lines_left, k = 6; while (i < n) { if (how[i][j][k] == 0) { printf("Line %d taken\n", n - i); i++; j--; k = 0; } else { i++; k++; } } */ return dp[0][lines_left][6]; } int __delete_this__main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | #include <stdio.h> #include <stdlib.h> #include <limits.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp with a large value and how as -1 for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case for (int k = 0; k < 10; k++) { dp[n][0][k] = 0; } // Fill the dp table for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines[lines_left]; int count = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[count++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Print the taken lines (optional) printf("Taken lines: "); for (int l = 0; l < count; l++) { printf("%d ", taken_lines[l]); } printf("\n"); return dp[0][lines_left][6]; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | #include <stdio.h> #include <stdlib.h> #include <limits.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp with a large value and how as -1 for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case for (int k = 0; k < 10; k++) { dp[n][0][k] = 0; } // Fill the dp table for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines[lines_left]; int count = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[count++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Print the taken lines (optional) printf("Taken lines: "); for (int l = 0; l < count; l++) { printf("%d ", taken_lines[l]); } printf("\n"); return dp[0][lines_left][6]; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | #include <stdio.h> #include <stdlib.h> #include <limits.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp with a large value and how as -1 for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case for (int k = 0; k < 10; k++) { dp[n][0][k] = 0; } // Fill the dp table for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9 && dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; } // Option 2: take the line if (i < n && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines[lines_left]; int count = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[count++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } // Print the taken lines (optional) printf("Taken lines: "); for (int l = 0; l < count; l++) { printf("%d ", taken_lines[l]); } printf("\n"); return dp[0][lines_left][6]; } int __delete_this__main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(arr[0]); int lines_left = 3; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Taken lines: 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
All tests passed
Testing if the previous output contains the string All tests passed
: True