Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's the C implementation of the `solve_dp` function with the type signature `float solve_dp(float* arr, int size, int lines_left)`:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | #include <stdio.h> #include <stdlib.h> #include <float.h> #define MAX_LINES 10 float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[size + 1][lines_left + 1][MAX_LINES]; int how[size + 1][lines_left + 1][MAX_LINES]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_LINES; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_LINES; k++) { // Option 1: don't take the line if (i < n - 1 && k < MAX_LINES - 1) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n - 1 && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines[lines_left]; int taken_count = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[taken_count++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | #include <stdio.h> #include <stdlib.h> #include <float.h> #define MAX_LINES 10 float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[size + 1][lines_left + 1][MAX_LINES]; int how[size + 1][lines_left + 1][MAX_LINES]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_LINES; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_LINES; k++) { // Option 1: don't take the line if (i < n - 1 && k < MAX_LINES - 1) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n - 1 && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines[lines_left]; int taken_count = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[taken_count++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | #include <stdio.h> #include <stdlib.h> #include <float.h> #define MAX_LINES 10 float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[size + 1][lines_left + 1][MAX_LINES]; int how[size + 1][lines_left + 1][MAX_LINES]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_LINES; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_LINES; k++) { // Option 1: don't take the line if (i < n - 1 && k < MAX_LINES - 1) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n - 1 && j > 0) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines[lines_left]; int taken_count = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[taken_count++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got -2147483648 instead of 11290.
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a C implementation of the `solve_dp` function with the type signature `float solve_dp(float* arr, int size, int lines_left)`:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include <stdio.h> #include <float.h> #define MAX_SIZE 100 #define MAX_LINES_LEFT 10 #define MAX_K 10 float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[MAX_SIZE + 1][MAX_LINES_LEFT + 1][MAX_K]; int how[MAX_SIZE + 1][MAX_LINES_LEFT + 1][MAX_K]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_K; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_K; k++) { // Option 1: don't take the line if (i < n - 1 && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n - 1 && j < lines_left) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j + 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j + 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // The final answer is stored in dp[0][lines_left][6] return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include <stdio.h> #include <float.h> #define MAX_SIZE 100 #define MAX_LINES_LEFT 10 #define MAX_K 10 float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[MAX_SIZE + 1][MAX_LINES_LEFT + 1][MAX_K]; int how[MAX_SIZE + 1][MAX_LINES_LEFT + 1][MAX_K]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_K; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_K; k++) { // Option 1: don't take the line if (i < n - 1 && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n - 1 && j < lines_left) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j + 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j + 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // The final answer is stored in dp[0][lines_left][6] return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | #include <stdio.h> #include <float.h> #define MAX_SIZE 100 #define MAX_LINES_LEFT 10 #define MAX_K 10 float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[MAX_SIZE + 1][MAX_LINES_LEFT + 1][MAX_K]; int how[MAX_SIZE + 1][MAX_LINES_LEFT + 1][MAX_K]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_K; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < MAX_K; k++) { // Option 1: don't take the line if (i < n - 1 && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n - 1 && j < lines_left) { float cost = arr[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j + 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j + 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // The final answer is stored in dp[0][lines_left][6] return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
*** stack smashing detected ***: terminated
main.sh: line 2: 16 Aborted (core dumped) ./a.out
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's the C implementation of the given Python program, with the type signature `float solve_dp(float* arr, int size, int lines_left)`:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | #include <stdio.h> #include <limits.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n - 1 && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n - 1 && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } return dp[0][lines_left][6]; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(float); int lines_left = 2; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | #include <stdio.h> #include <limits.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n - 1 && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n - 1 && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } return dp[0][lines_left][6]; } int main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(float); int lines_left = 2; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | #include <stdio.h> #include <limits.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n - 1 && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n - 1 && j > 0) { float cost = arr[i] + pow(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } return dp[0][lines_left][6]; } int __delete_this__main() { float arr[] = {1.0, 2.0, 3.0, 4.0, 5.0}; int size = sizeof(arr) / sizeof(float); int lines_left = 2; float result = solve_dp(arr, size, lines_left); printf("Minimum cost: %f\n", result); return 0; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got 1000000000 instead of 11290.
Testing if the previous output contains the string All tests passed
: False
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's the C implementation of the provided Python program with the requested type signature:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include <stdio.h> #include <limits.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: Don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: Take the line if (i < n && j > 0) { float cost = arr[i] + powf(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; float result = dp[0][lines_left][6]; return result; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include <stdio.h> #include <limits.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: Don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: Take the line if (i < n && j > 0) { float cost = arr[i] + powf(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; float result = dp[0][lines_left][6]; return result; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | #include <stdio.h> #include <limits.h> #include <math.h> float solve_dp(float* arr, int size, int lines_left) { int n = size; float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = 1e9; how[i][j][k] = -1; } } } // Base case dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: Don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: Take the line if (i < n && j > 0) { float cost = arr[i] + powf(k - 8, 2); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; float result = dp[0][lines_left][6]; return result; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's a python program. Please rewrite it in c with the type signature float solve_dp(float* arr, int size, int lines_left) def solve_dp(graph, lines_left): n = len(graph) dp = [[[1e9 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] # Initialize how as -1 indicating no decision made how = [[[-1 for _ in range(10)] for _ in range(lines_left + 1)] for _ in range(n + 1)] for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(10): if i == n and j == 0: dp[i][j][k] = 0 else: # Option 1: don't take the line if i < n and k < 9: if dp[i + 1][j][k + 1] < dp[i][j][k]: dp[i][j][k] = dp[i + 1][j][k + 1] how[i][j][k] = k + 1 # Representing choosing not to take the line # Option 2: take the line if i < n and j > 0: cost = graph[i] + (k - 8)**2 if cost + dp[i + 1][j - 1][0] < dp[i][j][k]: dp[i][j][k] = cost + dp[i + 1][j - 1][0] how[i][j][k] = 0 # Representing choosing to take the line # Reconstruct the solution i, j, k = 0, lines_left, 6 taken_lines = [] while i < n: if how[i][j][k] == 0: # Chose to take the line taken_lines.append(n - i) i += 1 j -= 1 k = 0 else: # Chose not to take the line i += 1 k += 1 return dp[0][lines_left][6]
Here's the C implementation of the given Python program with the type signature `float solve_dp(float* arr, int size, int lines_left)`:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | #include <stdio.h> #include <float.h> float solve_dp(float* graph, int n, int lines_left) { float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } // Base case: when there are no lines left, the cost is 0 dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = graph[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines[lines_left]; int taken_count = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[taken_count++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } return dp[0][lines_left][6]; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | #include <stdio.h> #include <float.h> float solve_dp(float* graph, int n, int lines_left) { float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } // Base case: when there are no lines left, the cost is 0 dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = graph[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines[lines_left]; int taken_count = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[taken_count++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } return dp[0][lines_left][6]; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | #include <stdio.h> #include <float.h> float solve_dp(float* graph, int n, int lines_left) { float dp[n + 1][lines_left + 1][10]; int how[n + 1][lines_left + 1][10]; // Initialize dp and how arrays for (int i = 0; i <= n; i++) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { dp[i][j][k] = FLT_MAX; how[i][j][k] = -1; } } } // Base case: when there are no lines left, the cost is 0 dp[n][0][0] = 0; for (int i = n - 1; i >= 0; i--) { for (int j = 0; j <= lines_left; j++) { for (int k = 0; k < 10; k++) { // Option 1: don't take the line if (i < n && k < 9) { if (dp[i + 1][j][k + 1] < dp[i][j][k]) { dp[i][j][k] = dp[i + 1][j][k + 1]; how[i][j][k] = k + 1; // Representing choosing not to take the line } } // Option 2: take the line if (i < n && j > 0) { float cost = graph[i] + (k - 8) * (k - 8); if (cost + dp[i + 1][j - 1][0] < dp[i][j][k]) { dp[i][j][k] = cost + dp[i + 1][j - 1][0]; how[i][j][k] = 0; // Representing choosing to take the line } } } } } // Reconstruct the solution int i = 0, j = lines_left, k = 6; int taken_lines[lines_left]; int taken_count = 0; while (i < n) { if (how[i][j][k] == 0) { // Chose to take the line taken_lines[taken_count++] = n - i; i++; j--; k = 0; } else { // Chose not to take the line i++; k++; } } return dp[0][lines_left][6]; } #include<stdio.h> #include<stdlib.h> int main() { float arr[] = {71, 89, 34, 63, 19, 94, 54, 61, 88, 20, 66, 46, 26, 87, 55, 81, 6, 2, 72, 75, 98, 78, 24, 95, 73, 7, 56, 48, 14, 99, 64, 51, 69, 77, 28, 47, 8, 22, 49, 3, 62, 32, 10, 82, 35, 18, 85, 60, 83, 23, 5, 40, 41, 68, 53, 52, 44, 45, 65, 84, 93, 25, 13, 1, 31, 11, 12, 97, 38, 0, 43, 90, 36, 70, 33, 17, 21, 30, 16, 15, 74, 67, 58, 37, 39, 96, 79, 29, 27, 92, 86, 9, 80, 42, 57, 91, 59, 4, 76, 50}; int answer = solve_dp(arr, 100, 100); int expected = 11290; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True