Explain what this code does. Then, convert this recursive function to an iterative one, making explicit the cubic work that's being done. The functions should return exactly the same output but the iterative one should be faster. Call your function `solve_iterative` and match the type signature of the original function. @lru_cache(maxsize=None) def solve_dp(graph, lines_left, distance_since_last): if len(graph) < lines_left: return 1e9, [] if lines_left == 0 and len(graph) == 0: return 0, [] # option 1: don't take the line value = (1e9, []) if distance_since_last < 10: value = min(value, solve_dp(graph[1:], lines_left, distance_since_last+1)) # option 2: take the line if lines_left > 0: sub, how = solve_dp(graph[1:], lines_left-1, 0) sub += graph[0] + (distance_since_last-8)**2 value = min(value, (sub, how + [len(graph)])) return value
Explain what this code does. Then, convert this recursive function to an iterative one, making explicit the cubic work that's being done. The functions should return exactly the same output but the iterative one should be faster. Call your function `solve_iterative` and match the type signature of the original function. @lru_cache(maxsize=None) def solve_dp(graph, lines_left, distance_since_last): if len(graph) < lines_left: return 1e9, [] if lines_left == 0 and len(graph) == 0: return 0, [] # option 1: don't take the line value = (1e9, []) if distance_since_last < 10: value = min(value, solve_dp(graph[1:], lines_left, distance_since_last+1)) # option 2: take the line if lines_left > 0: sub, how = solve_dp(graph[1:], lines_left-1, 0) sub += graph[0] + (distance_since_last-8)**2 value = min(value, (sub, how + [len(graph)])) return value
# Code Analysis This code implements a dynamic programming solution to an optimization problem. Here's what it does: 1. `solve_dp` is a recursive function that decides whether to "take a line" at each position in a graph. 2. Parameters: - `graph`: A list of values representing costs at each position - `lines_left`: Number of lines we can still place - `distance_since_last`: How many positions we've traversed since placing the last line 3. Decision points: - Option 1: Skip the current position (don't place a line) if we haven't gone 10 positions without a line - Option 2: Place a line at the current position if we have lines remaining 4. The cost of placing a line is: `graph[0] + (distance_since_last-8)²` 5. The function returns a tuple: (minimum cost, list of positions where lines were placed) 6. It uses `lru_cache` for memoization, which speeds up recursive calls by storing results. # Iterative Solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | def solve_iterative(graph, lines_left, distance_since_last): # Initialize dp table # Keys: (index, lines_left, distance_since_last) # Values: (cost, positions) dp = {} # Base cases for i in range(len(graph) + 1): for l in range(lines_left + 1): for d in range(11): # distance_since_last can be 0-10 if len(graph) - i < l: # Not enough positions left to place required lines dp[(i, l, d)] = (1e9, []) elif i == len(graph) and l == 0: # Successfully processed all positions with no lines left to place dp[(i, l, d)] = (0, []) else: dp[(i, l, d)] = (1e9, []) # Fill dp table from right to left for i in range(len(graph) - 1, -1, -1): for l in range(lines_left + 1): for d in range(11): # Option 1: Skip this position value = (1e9, []) if d < 10: value = min(value, dp[(i + 1, l, d + 1)]) # Option 2: Take a line at this position if l > 0: sub_cost, sub_pos = dp[(i + 1, l - 1, 0)] new_cost = sub_cost + graph[i] + (d - 8)**2 new_pos = sub_pos + [len(graph) - i] value = min(value, (new_cost, new_pos)) dp[(i, l, d)] = value return dp[(0, lines_left, distance_since_last)] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | def solve_iterative(graph, lines_left, distance_since_last): # Initialize dp table # Keys: (index, lines_left, distance_since_last) # Values: (cost, positions) dp = {} # Base cases for i in range(len(graph) + 1): for l in range(lines_left + 1): for d in range(11): # distance_since_last can be 0-10 if len(graph) - i < l: # Not enough positions left to place required lines dp[(i, l, d)] = (1e9, []) elif i == len(graph) and l == 0: # Successfully processed all positions with no lines left to place dp[(i, l, d)] = (0, []) else: dp[(i, l, d)] = (1e9, []) # Fill dp table from right to left for i in range(len(graph) - 1, -1, -1): for l in range(lines_left + 1): for d in range(11): # Option 1: Skip this position value = (1e9, []) if d < 10: value = min(value, dp[(i + 1, l, d + 1)]) # Option 2: Take a line at this position if l > 0: sub_cost, sub_pos = dp[(i + 1, l - 1, 0)] new_cost = sub_cost + graph[i] + (d - 8)**2 new_pos = sub_pos + [len(graph) - i] value = min(value, (new_cost, new_pos)) dp[(i, l, d)] = value return dp[(0, lines_left, distance_since_last)] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | def solve_iterative(graph, lines_left, distance_since_last): # Initialize dp table # Keys: (index, lines_left, distance_since_last) # Values: (cost, positions) dp = {} # Base cases for i in range(len(graph) + 1): for l in range(lines_left + 1): for d in range(11): # distance_since_last can be 0-10 if len(graph) - i < l: # Not enough positions left to place required lines dp[(i, l, d)] = (1e9, []) elif i == len(graph) and l == 0: # Successfully processed all positions with no lines left to place dp[(i, l, d)] = (0, []) else: dp[(i, l, d)] = (1e9, []) # Fill dp table from right to left for i in range(len(graph) - 1, -1, -1): for l in range(lines_left + 1): for d in range(11): # Option 1: Skip this position value = (1e9, []) if d < 10: value = min(value, dp[(i + 1, l, d + 1)]) # Option 2: Take a line at this position if l > 0: sub_cost, sub_pos = dp[(i + 1, l - 1, 0)] new_cost = sub_cost + graph[i] + (d - 8)**2 new_pos = sub_pos + [len(graph) - i] value = min(value, (new_cost, new_pos)) dp[(i, l, d)] = value return dp[(0, lines_left, distance_since_last)] answer = 0 import random mylist = list(range(100)) random.shuffle(mylist) from functools import lru_cache @lru_cache(maxsize=None) def my_solve_dp(graph, lines_left, distance_since_last): if len(graph) < lines_left: return 1e9, [] if lines_left == 0 and len(graph) == 0: return 0, [] # option 1: don't take the line value = (1e9, []) if distance_since_last < 10: value = min(value, my_solve_dp(graph[1:], lines_left, distance_since_last+1)) # option 2: take the line if lines_left > 0: sub, how = my_solve_dp(graph[1:], lines_left-1, 0) sub += graph[0] + (distance_since_last-8)**2 value = min(value, (sub, how + [len(graph)])) return value answer = solve_iterative(tuple(mylist), len(mylist)//8, 4) expected = my_solve_dp(tuple(mylist), len(mylist)//8, 4) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Resulting in output: True
Explain what this code does. Then, convert this recursive function to an iterative one, making explicit the cubic work that's being done. The functions should return exactly the same output but the iterative one should be faster. Call your function `solve_iterative` and match the type signature of the original function. @lru_cache(maxsize=None) def solve_dp(graph, lines_left, distance_since_last): if len(graph) < lines_left: return 1e9, [] if lines_left == 0 and len(graph) == 0: return 0, [] # option 1: don't take the line value = (1e9, []) if distance_since_last < 10: value = min(value, solve_dp(graph[1:], lines_left, distance_since_last+1)) # option 2: take the line if lines_left > 0: sub, how = solve_dp(graph[1:], lines_left-1, 0) sub += graph[0] + (distance_since_last-8)**2 value = min(value, (sub, how + [len(graph)])) return value
Explain what this code does. Then, convert this recursive function to an iterative one, making explicit the cubic work that's being done. The functions should return exactly the same output but the iterative one should be faster. Call your function `solve_iterative` and match the type signature of the original function. @lru_cache(maxsize=None) def solve_dp(graph, lines_left, distance_since_last): if len(graph) < lines_left: return 1e9, [] if lines_left == 0 and len(graph) == 0: return 0, [] # option 1: don't take the line value = (1e9, []) if distance_since_last < 10: value = min(value, solve_dp(graph[1:], lines_left, distance_since_last+1)) # option 2: take the line if lines_left > 0: sub, how = solve_dp(graph[1:], lines_left-1, 0) sub += graph[0] + (distance_since_last-8)**2 value = min(value, (sub, how + [len(graph)])) return value
# Explanation of the Original Code The `solve_dp` function implements a dynamic programming solution that optimally selects lines from a graph, subject to constraints. Here's what it does: 1. It takes three parameters: - `graph`: A list of values representing costs at different positions - `lines_left`: The number of lines that can still be selected - `distance_since_last`: How far we've traveled since selecting the last line 2. It uses `@lru_cache` for memoization to avoid redundant calculations. 3. The function has two base cases: - If we need more lines than available graph positions, return infinity (invalid) - If we've used all lines and processed the whole graph, return 0 (success) 4. For each position, it considers two options: - Skip this position (if distance_since_last < 10) - Take this position (if we have lines_left), adding a cost based on the graph value plus a penalty term 5. It returns a tuple of (minimum_cost, list_of_chosen_positions). The recursive calls build up a solution from right to left, with the penalty term `(distance_since_last-8)**2` suggesting an optimal distance of 8 between selections. # Iterative Implementation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | def solve_iterative(graph, lines_left, distance_since_last): n = len(graph) # Create 3D DP tables: one for values, one for choices dp = {} choices = {} # Fill the DP tables bottom-up (from end of graph to beginning) for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(11): # distance_since_last can be 0-10 # Base cases if i == n and j == 0: dp[(i, j, k)] = 0 choices[(i, j, k)] = [] continue if i == n or n - i < j: dp[(i, j, k)] = 1e9 choices[(i, j, k)] = [] continue # Initialize to a large value dp[(i, j, k)] = 1e9 choices[(i, j, k)] = [] # Option 1: Don't take the line if k < 10: skip_value = dp.get((i+1, j, k+1), 1e9) if skip_value < dp[(i, j, k)]: dp[(i, j, k)] = skip_value choices[(i, j, k)] = choices.get((i+1, j, k+1), []) # Option 2: Take the line if j > 0: take_value = dp.get((i+1, j-1, 0), 1e9) take_value += graph[i] + (k-8)**2 if take_value < dp[(i, j, k)]: dp[(i, j, k)] = take_value choices[(i, j, k)] = [n-i] + choices.get((i+1, j-1, 0), []) # Return the optimal value and choices return dp[(0, lines_left, distance_since_last)], choices[(0, lines_left, distance_since_last)] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | def solve_iterative(graph, lines_left, distance_since_last): n = len(graph) # Create 3D DP tables: one for values, one for choices dp = {} choices = {} # Fill the DP tables bottom-up (from end of graph to beginning) for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(11): # distance_since_last can be 0-10 # Base cases if i == n and j == 0: dp[(i, j, k)] = 0 choices[(i, j, k)] = [] continue if i == n or n - i < j: dp[(i, j, k)] = 1e9 choices[(i, j, k)] = [] continue # Initialize to a large value dp[(i, j, k)] = 1e9 choices[(i, j, k)] = [] # Option 1: Don't take the line if k < 10: skip_value = dp.get((i+1, j, k+1), 1e9) if skip_value < dp[(i, j, k)]: dp[(i, j, k)] = skip_value choices[(i, j, k)] = choices.get((i+1, j, k+1), []) # Option 2: Take the line if j > 0: take_value = dp.get((i+1, j-1, 0), 1e9) take_value += graph[i] + (k-8)**2 if take_value < dp[(i, j, k)]: dp[(i, j, k)] = take_value choices[(i, j, k)] = [n-i] + choices.get((i+1, j-1, 0), []) # Return the optimal value and choices return dp[(0, lines_left, distance_since_last)], choices[(0, lines_left, distance_since_last)] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | def solve_iterative(graph, lines_left, distance_since_last): n = len(graph) # Create 3D DP tables: one for values, one for choices dp = {} choices = {} # Fill the DP tables bottom-up (from end of graph to beginning) for i in range(n, -1, -1): for j in range(lines_left + 1): for k in range(11): # distance_since_last can be 0-10 # Base cases if i == n and j == 0: dp[(i, j, k)] = 0 choices[(i, j, k)] = [] continue if i == n or n - i < j: dp[(i, j, k)] = 1e9 choices[(i, j, k)] = [] continue # Initialize to a large value dp[(i, j, k)] = 1e9 choices[(i, j, k)] = [] # Option 1: Don't take the line if k < 10: skip_value = dp.get((i+1, j, k+1), 1e9) if skip_value < dp[(i, j, k)]: dp[(i, j, k)] = skip_value choices[(i, j, k)] = choices.get((i+1, j, k+1), []) # Option 2: Take the line if j > 0: take_value = dp.get((i+1, j-1, 0), 1e9) take_value += graph[i] + (k-8)**2 if take_value < dp[(i, j, k)]: dp[(i, j, k)] = take_value choices[(i, j, k)] = [n-i] + choices.get((i+1, j-1, 0), []) # Return the optimal value and choices return dp[(0, lines_left, distance_since_last)], choices[(0, lines_left, distance_since_last)] answer = 0 import random mylist = list(range(100)) random.shuffle(mylist) from functools import lru_cache @lru_cache(maxsize=None) def my_solve_dp(graph, lines_left, distance_since_last): if len(graph) < lines_left: return 1e9, [] if lines_left == 0 and len(graph) == 0: return 0, [] # option 1: don't take the line value = (1e9, []) if distance_since_last < 10: value = min(value, my_solve_dp(graph[1:], lines_left, distance_since_last+1)) # option 2: take the line if lines_left > 0: sub, how = my_solve_dp(graph[1:], lines_left-1, 0) sub += graph[0] + (distance_since_last-8)**2 value = min(value, (sub, how + [len(graph)])) return value answer = solve_iterative(tuple(mylist), len(mylist)//8, 4) expected = my_solve_dp(tuple(mylist), len(mylist)//8, 4) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 78, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got (178, [97, 92, 84, 76, 66, 58, 49, 41, 33, 23, 13, 6]) instead of (178, [6, 13, 23, 33, 41, 49, 58, 66, 76, 84, 92, 97])
Testing if the previous output contains the string All tests passed
: False
Resulting in output: True