Rewrite this function in C. You can assume that the input is a 2d matrix correctly formatted. Call it rref(int** matrix, int rows, int cols, int graphlen) where the size is matrix[rows][cols]. Return an int** of used_for_row. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]
Rewrite this function in C. You can assume that the input is a 2d matrix correctly formatted. Call it rref(int** matrix, int rows, int cols, int graphlen) where the size is matrix[rows][cols]. Return an int** of used_for_row. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | #include <stdlib.h> #include <assert.h> #include <string.h> int** rref(int** matrix, int rows, int cols, int graphlen) { const int PH = 16; int extra = 0; int col = 0; // Initialize used_for_row int** used_for_row = (int**)malloc(rows * sizeof(int*)); int* used_for_row_sizes = (int*)malloc(rows * sizeof(int)); for (int i = 0; i < rows; i++) { used_for_row[i] = (int*)malloc(rows * sizeof(int)); used_for_row[i][0] = i; used_for_row_sizes[i] = 1; } // Take matrix modulo PH for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = ((matrix[i][j] % PH) + PH) % PH; } } while (col + extra < cols - 1 && col < rows) { if (matrix[col][col + extra] == 0) { // Check if the entire column is zero int all_zeros = 1; for (int i = 0; i < rows; i++) { if (matrix[i][col + extra] != 0) { all_zeros = 0; break; } } if (all_zeros) { extra += 1; continue; } // Find the last non-zero entry in the column int other = -1; for (int i = rows - 1; i >= 0; i--) { if (matrix[i][col + extra] != 0) { other = i; break; } } if (other < col) { extra += 1; continue; } // Swap rows for (int j = 0; j < cols; j++) { int temp = matrix[col][j]; matrix[col][j] = matrix[other][j]; matrix[other][j] = temp; } // Swap used_for_row int* temp_arr = used_for_row[col]; used_for_row[col] = used_for_row[other]; used_for_row[other] = temp_arr; int temp_size = used_for_row_sizes[col]; used_for_row_sizes[col] = used_for_row_sizes[other]; used_for_row_sizes[other] = temp_size; } // Process pivot int pivot = matrix[col][col + extra]; if (col + extra < graphlen) { assert(abs(pivot) == 1 || abs(pivot) == PH - 1); } else { assert(abs(pivot) == 2 || abs(pivot) == PH - 2); pivot /= 2; } // Multiply row by pivot for (int j = 0; j < cols; j++) { matrix[col][j] = (matrix[col][j] * pivot) % PH; } // Find rows with non-zero in current column for (int i = 0; i < rows; i++) { if (i == col) continue; if (matrix[i][col + extra] != 0) { // Union operation: merge used_for_row[col] into used_for_row[i] int new_size = used_for_row_sizes[i]; for (int k = 0; k < used_for_row_sizes[col]; k++) { int is_in = 0; for (int l = 0; l < used_for_row_sizes[i]; l++) { if (used_for_row[i][l] == used_for_row[col][k]) { is_in = 1; break; } } if (!is_in) { used_for_row[i][new_size++] = used_for_row[col][k]; } } used_for_row_sizes[i] = new_size; if (col < graphlen) { int factor = matrix[i][col + extra]; for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - (matrix[col][j] * factor) % PH) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; } } else { while (matrix[i][col + extra] != 0) { for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - matrix[col][j]) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; } } } } } col += 1; } // Sort used_for_row arrays for (int i = 0; i < rows; i++) { for (int j = 0; j < used_for_row_sizes[i] - 1; j++) { for (int k = j + 1; k < used_for_row_sizes[i]; k++) { if (used_for_row[i][j] > used_for_row[i][k]) { int temp = used_for_row[i][j]; used_for_row[i][j] = used_for_row[i][k]; used_for_row[i][k] = temp; } } } } // We don't free used_for_row_sizes because the caller needs to know the size of each array free(used_for_row_sizes); return used_for_row; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | #include <stdlib.h> #include <assert.h> #include <string.h> int** rref(int** matrix, int rows, int cols, int graphlen) { const int PH = 16; int extra = 0; int col = 0; // Initialize used_for_row int** used_for_row = (int**)malloc(rows * sizeof(int*)); int* used_for_row_sizes = (int*)malloc(rows * sizeof(int)); for (int i = 0; i < rows; i++) { used_for_row[i] = (int*)malloc(rows * sizeof(int)); used_for_row[i][0] = i; used_for_row_sizes[i] = 1; } // Take matrix modulo PH for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = ((matrix[i][j] % PH) + PH) % PH; } } while (col + extra < cols - 1 && col < rows) { if (matrix[col][col + extra] == 0) { // Check if the entire column is zero int all_zeros = 1; for (int i = 0; i < rows; i++) { if (matrix[i][col + extra] != 0) { all_zeros = 0; break; } } if (all_zeros) { extra += 1; continue; } // Find the last non-zero entry in the column int other = -1; for (int i = rows - 1; i >= 0; i--) { if (matrix[i][col + extra] != 0) { other = i; break; } } if (other < col) { extra += 1; continue; } // Swap rows for (int j = 0; j < cols; j++) { int temp = matrix[col][j]; matrix[col][j] = matrix[other][j]; matrix[other][j] = temp; } // Swap used_for_row int* temp_arr = used_for_row[col]; used_for_row[col] = used_for_row[other]; used_for_row[other] = temp_arr; int temp_size = used_for_row_sizes[col]; used_for_row_sizes[col] = used_for_row_sizes[other]; used_for_row_sizes[other] = temp_size; } // Process pivot int pivot = matrix[col][col + extra]; if (col + extra < graphlen) { assert(abs(pivot) == 1 || abs(pivot) == PH - 1); } else { assert(abs(pivot) == 2 || abs(pivot) == PH - 2); pivot /= 2; } // Multiply row by pivot for (int j = 0; j < cols; j++) { matrix[col][j] = (matrix[col][j] * pivot) % PH; } // Find rows with non-zero in current column for (int i = 0; i < rows; i++) { if (i == col) continue; if (matrix[i][col + extra] != 0) { // Union operation: merge used_for_row[col] into used_for_row[i] int new_size = used_for_row_sizes[i]; for (int k = 0; k < used_for_row_sizes[col]; k++) { int is_in = 0; for (int l = 0; l < used_for_row_sizes[i]; l++) { if (used_for_row[i][l] == used_for_row[col][k]) { is_in = 1; break; } } if (!is_in) { used_for_row[i][new_size++] = used_for_row[col][k]; } } used_for_row_sizes[i] = new_size; if (col < graphlen) { int factor = matrix[i][col + extra]; for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - (matrix[col][j] * factor) % PH) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; } } else { while (matrix[i][col + extra] != 0) { for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - matrix[col][j]) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; } } } } } col += 1; } // Sort used_for_row arrays for (int i = 0; i < rows; i++) { for (int j = 0; j < used_for_row_sizes[i] - 1; j++) { for (int k = j + 1; k < used_for_row_sizes[i]; k++) { if (used_for_row[i][j] > used_for_row[i][k]) { int temp = used_for_row[i][j]; used_for_row[i][j] = used_for_row[i][k]; used_for_row[i][k] = temp; } } } } // We don't free used_for_row_sizes because the caller needs to know the size of each array free(used_for_row_sizes); return used_for_row; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | #include <stdlib.h> #include <assert.h> #include <string.h> int** rref(int** matrix, int rows, int cols, int graphlen) { const int PH = 16; int extra = 0; int col = 0; // Initialize used_for_row int** used_for_row = (int**)malloc(rows * sizeof(int*)); int* used_for_row_sizes = (int*)malloc(rows * sizeof(int)); for (int i = 0; i < rows; i++) { used_for_row[i] = (int*)malloc(rows * sizeof(int)); used_for_row[i][0] = i; used_for_row_sizes[i] = 1; } // Take matrix modulo PH for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = ((matrix[i][j] % PH) + PH) % PH; } } while (col + extra < cols - 1 && col < rows) { if (matrix[col][col + extra] == 0) { // Check if the entire column is zero int all_zeros = 1; for (int i = 0; i < rows; i++) { if (matrix[i][col + extra] != 0) { all_zeros = 0; break; } } if (all_zeros) { extra += 1; continue; } // Find the last non-zero entry in the column int other = -1; for (int i = rows - 1; i >= 0; i--) { if (matrix[i][col + extra] != 0) { other = i; break; } } if (other < col) { extra += 1; continue; } // Swap rows for (int j = 0; j < cols; j++) { int temp = matrix[col][j]; matrix[col][j] = matrix[other][j]; matrix[other][j] = temp; } // Swap used_for_row int* temp_arr = used_for_row[col]; used_for_row[col] = used_for_row[other]; used_for_row[other] = temp_arr; int temp_size = used_for_row_sizes[col]; used_for_row_sizes[col] = used_for_row_sizes[other]; used_for_row_sizes[other] = temp_size; } // Process pivot int pivot = matrix[col][col + extra]; if (col + extra < graphlen) { assert(abs(pivot) == 1 || abs(pivot) == PH - 1); } else { assert(abs(pivot) == 2 || abs(pivot) == PH - 2); pivot /= 2; } // Multiply row by pivot for (int j = 0; j < cols; j++) { matrix[col][j] = (matrix[col][j] * pivot) % PH; } // Find rows with non-zero in current column for (int i = 0; i < rows; i++) { if (i == col) continue; if (matrix[i][col + extra] != 0) { // Union operation: merge used_for_row[col] into used_for_row[i] int new_size = used_for_row_sizes[i]; for (int k = 0; k < used_for_row_sizes[col]; k++) { int is_in = 0; for (int l = 0; l < used_for_row_sizes[i]; l++) { if (used_for_row[i][l] == used_for_row[col][k]) { is_in = 1; break; } } if (!is_in) { used_for_row[i][new_size++] = used_for_row[col][k]; } } used_for_row_sizes[i] = new_size; if (col < graphlen) { int factor = matrix[i][col + extra]; for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - (matrix[col][j] * factor) % PH) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; } } else { while (matrix[i][col + extra] != 0) { for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - matrix[col][j]) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; } } } } } col += 1; } // Sort used_for_row arrays for (int i = 0; i < rows; i++) { for (int j = 0; j < used_for_row_sizes[i] - 1; j++) { for (int k = j + 1; k < used_for_row_sizes[i]; k++) { if (used_for_row[i][j] > used_for_row[i][k]) { int temp = used_for_row[i][j]; used_for_row[i][j] = used_for_row[i][k]; used_for_row[i][k] = temp; } } } } // We don't free used_for_row_sizes because the caller needs to know the size of each array free(used_for_row_sizes); return used_for_row; } #include<stdio.h> #include<stdlib.h> int main() { int arr0[] = {1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; int arr1[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr2[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20}; int arr3[] = {0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20}; int arr4[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr5[] = {0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr6[] = {0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0}; int arr7[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30}; int arr8[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr9[] = {0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20}; int arr10[] = {1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; int arr11[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr12[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr13[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14}; int arr14[] = {0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr15[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30}; int arr16[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr17[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr18[] = {0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr19[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13}; int arr20[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr21[] = {0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr22[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20}; int arr23[] = {0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr24[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr25[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13}; int arr26[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr27[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13}; int arr28[] = {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr29[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr30[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr31[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr32[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10}; int arr33[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13}; int arr34[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr35[] = {0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9}; int arr36[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20}; int arr37[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40}; int arr38[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int* arr[] = {arr0, arr1, arr2, arr3, arr4, arr5, arr6, arr7, arr8, arr9, arr10, arr11, arr12, arr13, arr14, arr15, arr16, arr17, arr18, arr19, arr20, arr21, arr22, arr23, arr24, arr25, arr26, arr27, arr28, arr29, arr30, arr31, arr32, arr33, arr34, arr35, arr36, arr37, arr38}; int** got = rref(arr, 39, 49, 37); int answer = got[3][0]+got[3][1]+got[3][2]+got[3][3]+got[3][4]+got[3][5]+got[3][6]; int expected = 146; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Rewrite this function in C. You can assume that the input is a 2d matrix correctly formatted. Call it rref(int** matrix, int rows, int cols, int graphlen) where the size is matrix[rows][cols]. Return an int** of used_for_row. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]
Rewrite this function in C. You can assume that the input is a 2d matrix correctly formatted. Call it rref(int** matrix, int rows, int cols, int graphlen) where the size is matrix[rows][cols]. Return an int** of used_for_row. def rref(matrix, graphlen): PH = 16 extra = 0 col = 0 pivots = [] used_for_row = [set([i]) for i in range(matrix.shape[0])] matrix = matrix%PH while col+extra < matrix.shape[1]-1 and col < matrix.shape[0]: if matrix[col,col+extra] == 0: if np.all(matrix[:,col] == 0): extra += 1 continue other = np.argwhere(matrix[:,col+extra] != 0).flatten()[-1] if other < col: extra += 1 continue matrix[col], matrix[other] = list(matrix[other]), list(matrix[col]) used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] pivots.append(col+extra) pivot = matrix[col,col+extra] if col+extra < graphlen: assert np.abs(pivot) == 1 or np.abs(pivot) == PH-1 else: assert np.abs(pivot) == 2 or np.abs(pivot) == PH-2 pivot //= 2 matrix[col] *= pivot matrix[col] %= PH others = np.argwhere(matrix[:,col+extra]).flatten() for i in others: if i == col: continue used_for_row[i] |= used_for_row[col] if col < graphlen: matrix[i] -= matrix[col]*matrix[i,col+extra] else: while matrix[i,col+extra] != 0: matrix[i] = (matrix[i]-matrix[col])%PH matrix[i] %= PH col += 1 matrix = np.array(matrix)%PH return [sorted(x) for x in used_for_row]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | #include <stdlib.h> #include <assert.h> #include <math.h> int** rref(int** matrix, int rows, int cols, int graphlen) { const int PH = 16; int extra = 0; int col = 0; // Initialize used_for_row int** used_for_row = (int**)malloc(rows * sizeof(int*)); int* used_for_row_size = (int*)malloc(rows * sizeof(int)); for (int i = 0; i < rows; i++) { used_for_row[i] = (int*)malloc(rows * sizeof(int)); // Maximum possible size used_for_row[i][0] = i; used_for_row_size[i] = 1; } // Apply modulo PH to the entire matrix for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = ((matrix[i][j] % PH) + PH) % PH; // Ensure positive modulo } } while (col + extra < cols - 1 && col < rows) { if (matrix[col][col + extra] == 0) { // Check if the entire column is zero int is_col_all_zero = 1; for (int i = 0; i < rows; i++) { if (matrix[i][col + extra] != 0) { is_col_all_zero = 0; break; } } if (is_col_all_zero) { extra++; continue; } // Find the last non-zero element in the column int other = -1; for (int i = rows - 1; i >= 0; i--) { if (matrix[i][col + extra] != 0) { other = i; break; } } if (other < col) { extra++; continue; } // Swap rows for (int j = 0; j < cols; j++) { int temp = matrix[col][j]; matrix[col][j] = matrix[other][j]; matrix[other][j] = temp; } // Swap used_for_row int* temp_used = used_for_row[col]; int temp_size = used_for_row_size[col]; used_for_row[col] = used_for_row[other]; used_for_row_size[col] = used_for_row_size[other]; used_for_row[other] = temp_used; used_for_row_size[other] = temp_size; } int pivot = matrix[col][col + extra]; if (col + extra < graphlen) { assert(abs(pivot) == 1 || abs(pivot) == PH - 1); } else { assert(abs(pivot) == 2 || abs(pivot) == PH - 2); pivot /= 2; } // Multiply row by pivot for (int j = 0; j < cols; j++) { matrix[col][j] = (matrix[col][j] * pivot) % PH; } // Process other rows for (int i = 0; i < rows; i++) { if (i == col || matrix[i][col + extra] == 0) continue; // Merge used_for_row[col] into used_for_row[i] for (int k = 0; k < used_for_row_size[col]; k++) { int value = used_for_row[col][k]; int exists = 0; for (int l = 0; l < used_for_row_size[i]; l++) { if (used_for_row[i][l] == value) { exists = 1; break; } } if (!exists) { used_for_row[i][used_for_row_size[i]++] = value; } } if (col < graphlen) { int multiplier = matrix[i][col + extra]; for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - multiplier * matrix[col][j]) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; // Ensure positive modulo } } else { while (matrix[i][col + extra] != 0) { for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - matrix[col][j]) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; // Ensure positive modulo } } } } col++; } // Apply modulo PH to the entire matrix again for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = ((matrix[i][j] % PH) + PH) % PH; } } // Sort the values in each used_for_row array for (int i = 0; i < rows; i++) { // Bubble sort for (int j = 0; j < used_for_row_size[i] - 1; j++) { for (int k = 0; k < used_for_row_size[i] - j - 1; k++) { if (used_for_row[i][k] > used_for_row[i][k + 1]) { int temp = used_for_row[i][k]; used_for_row[i][k] = used_for_row[i][k + 1]; used_for_row[i][k + 1] = temp; } } } } // Create final result with exact sizes int** result = (int**)malloc(rows * sizeof(int*)); for (int i = 0; i < rows; i++) { result[i] = (int*)malloc((used_for_row_size[i] + 1) * sizeof(int)); // +1 for size result[i][0] = used_for_row_size[i]; // Store size at index 0 for (int j = 0; j < used_for_row_size[i]; j++) { result[i][j + 1] = used_for_row[i][j]; } free(used_for_row[i]); } free(used_for_row); free(used_for_row_size); return result; } |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | #include <stdlib.h> #include <assert.h> #include <math.h> int** rref(int** matrix, int rows, int cols, int graphlen) { const int PH = 16; int extra = 0; int col = 0; // Initialize used_for_row int** used_for_row = (int**)malloc(rows * sizeof(int*)); int* used_for_row_size = (int*)malloc(rows * sizeof(int)); for (int i = 0; i < rows; i++) { used_for_row[i] = (int*)malloc(rows * sizeof(int)); // Maximum possible size used_for_row[i][0] = i; used_for_row_size[i] = 1; } // Apply modulo PH to the entire matrix for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = ((matrix[i][j] % PH) + PH) % PH; // Ensure positive modulo } } while (col + extra < cols - 1 && col < rows) { if (matrix[col][col + extra] == 0) { // Check if the entire column is zero int is_col_all_zero = 1; for (int i = 0; i < rows; i++) { if (matrix[i][col + extra] != 0) { is_col_all_zero = 0; break; } } if (is_col_all_zero) { extra++; continue; } // Find the last non-zero element in the column int other = -1; for (int i = rows - 1; i >= 0; i--) { if (matrix[i][col + extra] != 0) { other = i; break; } } if (other < col) { extra++; continue; } // Swap rows for (int j = 0; j < cols; j++) { int temp = matrix[col][j]; matrix[col][j] = matrix[other][j]; matrix[other][j] = temp; } // Swap used_for_row int* temp_used = used_for_row[col]; int temp_size = used_for_row_size[col]; used_for_row[col] = used_for_row[other]; used_for_row_size[col] = used_for_row_size[other]; used_for_row[other] = temp_used; used_for_row_size[other] = temp_size; } int pivot = matrix[col][col + extra]; if (col + extra < graphlen) { assert(abs(pivot) == 1 || abs(pivot) == PH - 1); } else { assert(abs(pivot) == 2 || abs(pivot) == PH - 2); pivot /= 2; } // Multiply row by pivot for (int j = 0; j < cols; j++) { matrix[col][j] = (matrix[col][j] * pivot) % PH; } // Process other rows for (int i = 0; i < rows; i++) { if (i == col || matrix[i][col + extra] == 0) continue; // Merge used_for_row[col] into used_for_row[i] for (int k = 0; k < used_for_row_size[col]; k++) { int value = used_for_row[col][k]; int exists = 0; for (int l = 0; l < used_for_row_size[i]; l++) { if (used_for_row[i][l] == value) { exists = 1; break; } } if (!exists) { used_for_row[i][used_for_row_size[i]++] = value; } } if (col < graphlen) { int multiplier = matrix[i][col + extra]; for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - multiplier * matrix[col][j]) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; // Ensure positive modulo } } else { while (matrix[i][col + extra] != 0) { for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - matrix[col][j]) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; // Ensure positive modulo } } } } col++; } // Apply modulo PH to the entire matrix again for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = ((matrix[i][j] % PH) + PH) % PH; } } // Sort the values in each used_for_row array for (int i = 0; i < rows; i++) { // Bubble sort for (int j = 0; j < used_for_row_size[i] - 1; j++) { for (int k = 0; k < used_for_row_size[i] - j - 1; k++) { if (used_for_row[i][k] > used_for_row[i][k + 1]) { int temp = used_for_row[i][k]; used_for_row[i][k] = used_for_row[i][k + 1]; used_for_row[i][k + 1] = temp; } } } } // Create final result with exact sizes int** result = (int**)malloc(rows * sizeof(int*)); for (int i = 0; i < rows; i++) { result[i] = (int*)malloc((used_for_row_size[i] + 1) * sizeof(int)); // +1 for size result[i][0] = used_for_row_size[i]; // Store size at index 0 for (int j = 0; j < used_for_row_size[i]; j++) { result[i][j + 1] = used_for_row[i][j]; } free(used_for_row[i]); } free(used_for_row); free(used_for_row_size); return result; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | #include <stdlib.h> #include <assert.h> #include <math.h> int** rref(int** matrix, int rows, int cols, int graphlen) { const int PH = 16; int extra = 0; int col = 0; // Initialize used_for_row int** used_for_row = (int**)malloc(rows * sizeof(int*)); int* used_for_row_size = (int*)malloc(rows * sizeof(int)); for (int i = 0; i < rows; i++) { used_for_row[i] = (int*)malloc(rows * sizeof(int)); // Maximum possible size used_for_row[i][0] = i; used_for_row_size[i] = 1; } // Apply modulo PH to the entire matrix for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = ((matrix[i][j] % PH) + PH) % PH; // Ensure positive modulo } } while (col + extra < cols - 1 && col < rows) { if (matrix[col][col + extra] == 0) { // Check if the entire column is zero int is_col_all_zero = 1; for (int i = 0; i < rows; i++) { if (matrix[i][col + extra] != 0) { is_col_all_zero = 0; break; } } if (is_col_all_zero) { extra++; continue; } // Find the last non-zero element in the column int other = -1; for (int i = rows - 1; i >= 0; i--) { if (matrix[i][col + extra] != 0) { other = i; break; } } if (other < col) { extra++; continue; } // Swap rows for (int j = 0; j < cols; j++) { int temp = matrix[col][j]; matrix[col][j] = matrix[other][j]; matrix[other][j] = temp; } // Swap used_for_row int* temp_used = used_for_row[col]; int temp_size = used_for_row_size[col]; used_for_row[col] = used_for_row[other]; used_for_row_size[col] = used_for_row_size[other]; used_for_row[other] = temp_used; used_for_row_size[other] = temp_size; } int pivot = matrix[col][col + extra]; if (col + extra < graphlen) { assert(abs(pivot) == 1 || abs(pivot) == PH - 1); } else { assert(abs(pivot) == 2 || abs(pivot) == PH - 2); pivot /= 2; } // Multiply row by pivot for (int j = 0; j < cols; j++) { matrix[col][j] = (matrix[col][j] * pivot) % PH; } // Process other rows for (int i = 0; i < rows; i++) { if (i == col || matrix[i][col + extra] == 0) continue; // Merge used_for_row[col] into used_for_row[i] for (int k = 0; k < used_for_row_size[col]; k++) { int value = used_for_row[col][k]; int exists = 0; for (int l = 0; l < used_for_row_size[i]; l++) { if (used_for_row[i][l] == value) { exists = 1; break; } } if (!exists) { used_for_row[i][used_for_row_size[i]++] = value; } } if (col < graphlen) { int multiplier = matrix[i][col + extra]; for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - multiplier * matrix[col][j]) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; // Ensure positive modulo } } else { while (matrix[i][col + extra] != 0) { for (int j = 0; j < cols; j++) { matrix[i][j] = (matrix[i][j] - matrix[col][j]) % PH; if (matrix[i][j] < 0) matrix[i][j] += PH; // Ensure positive modulo } } } } col++; } // Apply modulo PH to the entire matrix again for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { matrix[i][j] = ((matrix[i][j] % PH) + PH) % PH; } } // Sort the values in each used_for_row array for (int i = 0; i < rows; i++) { // Bubble sort for (int j = 0; j < used_for_row_size[i] - 1; j++) { for (int k = 0; k < used_for_row_size[i] - j - 1; k++) { if (used_for_row[i][k] > used_for_row[i][k + 1]) { int temp = used_for_row[i][k]; used_for_row[i][k] = used_for_row[i][k + 1]; used_for_row[i][k + 1] = temp; } } } } // Create final result with exact sizes int** result = (int**)malloc(rows * sizeof(int*)); for (int i = 0; i < rows; i++) { result[i] = (int*)malloc((used_for_row_size[i] + 1) * sizeof(int)); // +1 for size result[i][0] = used_for_row_size[i]; // Store size at index 0 for (int j = 0; j < used_for_row_size[i]; j++) { result[i][j + 1] = used_for_row[i][j]; } free(used_for_row[i]); } free(used_for_row); free(used_for_row_size); return result; } #include<stdio.h> #include<stdlib.h> int main() { int arr0[] = {1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; int arr1[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr2[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20}; int arr3[] = {0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20}; int arr4[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr5[] = {0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr6[] = {0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0}; int arr7[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30}; int arr8[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr9[] = {0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20}; int arr10[] = {1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; int arr11[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr12[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr13[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14}; int arr14[] = {0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr15[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30}; int arr16[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr17[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr18[] = {0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr19[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13}; int arr20[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr21[] = {0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr22[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20}; int arr23[] = {0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}; int arr24[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr25[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13}; int arr26[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr27[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13}; int arr28[] = {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr29[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr30[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int arr31[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr32[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10}; int arr33[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13}; int arr34[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11}; int arr35[] = {0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9}; int arr36[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20}; int arr37[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40}; int arr38[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int* arr[] = {arr0, arr1, arr2, arr3, arr4, arr5, arr6, arr7, arr8, arr9, arr10, arr11, arr12, arr13, arr14, arr15, arr16, arr17, arr18, arr19, arr20, arr21, arr22, arr23, arr24, arr25, arr26, arr27, arr28, arr29, arr30, arr31, arr32, arr33, arr34, arr35, arr36, arr37, arr38}; int** got = rref(arr, 39, 49, 37); int answer = got[3][0]+got[3][1]+got[3][2]+got[3][3]+got[3][4]+got[3][5]+got[3][6]; int expected = 146; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
Wrong answer; got 115 instead of 146.
Testing if the previous output contains the string All tests passed
: False