from evaluator import *
DESCRIPTION = "This test case checks if the model can predict what the gradient of a variable is in PyTorch."
TAGS = ['explain', 'python']
question = """
What will this function print
```
def diff_round(x, decimals=1):
scale_factor = (10 ** decimals)
x = x * scale_factor
diff = (1 + 1e-2) * x - torch.floor(x)
x = x - diff + (torch.floor(x) + torch.where(diff >= 0.5, 1, 0))
x = x / scale_factor
return x
g = torch.tensor([.99, 1.54, 1.9], dtype=torch.float32, requires_grad=True)
loss = torch.sum(diff_round(g, 1))
loss.backward()
print(g.grad.sum())
```
"""
TestSimTorchGrad = question >> LLMRun() >> SubstringEvaluator("-0.03")
if __name__ == "__main__":
print(run_test(TestSimTorchGrad))