1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from evaluator import *

DESCRIPTION = "Test if the model can implement an interpreter for a new assembly language from a text description."

TAGS = ['code', 'python']

question = """Here is the description of a new assembly language:

* 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers.
* 1 flag that can hold a boolean value (True or False).
* 100 memory addresses (0-99) that can hold integers.
* 1 instruction pointer that points to the current instruction being executed.

Each instruction is of the form
OP ARG1 ARG2 ...
where ARGn can be either a register (e.g., R1) or a constant (e.g., 10).

Labels are written with a lowercase word followed by colon.

The assembly language supports the following instructions:
* SET Rx C: Assigns the value C to register Rx.
* ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx.
* (similarly for SUB, MUL, DIV, MOD)
* EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise.
* (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE)
* INC/DEC Rx: Increments/Decrements the value of Rx by one.
* JMP L: Jumps to label L unconditionally.
* JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set.
* LOAD Rx M: Loads the value at memory address M into register Rx.
* STORE Rx M: Stores the value of register Rx into memory address M.
* HCF: Stops the program (with pizzazz)

For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...):

    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    EQ R1 20      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program


Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
"""

primes = """

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

code = """
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
"""

test_case, answer = make_python_test([(f'evaluate("""{code}""")[:10]', "[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]"),
                                      (f'evaluate("""{primes}""")[:10]', "[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]")
                                      ])

TestImplementAssembly = question >> LLMRun() >> ExtractCode(lang="python") >> PythonRun(test_case) >> SubstringEvaluator(answer)


if __name__ == "__main__":
    print(run_test(TestImplementAssembly))