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Why?
Curiosity!
Reconnaissance!

Data Extraction!
Auditing!



This talk:

A first-principles approach
to Membership Inference



Membership Inference:
















Challenge 1:

A

We can't enumerate the distribution
over all models parameters.




One bit of background:
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A = Pr( LOSS




Challenge 2:

Can we compute the
distribution of model losses?
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Feldman & Zhang. What neural networks memorize and why: Discovering the long tail via influence estimation. 2020.
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Challenge 3:

How do we model
these distributions?

Loss of example



Two choilces:

1. Nonparametric



Tw '

Challenge 4:

1.

Nonparametric modeling would
require training too many models.



Two choilces:

2. Parametric



Challenge 5:

Fitting the data to a nice
distribution requires care.
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Method

Yeom et al. [70]
Shokri et al. [60]
Jayaraman et al. [25]
Song and Mittal [61]
Sablayrolles et al. [56]
Long et al. [37]
Watson et al. [68]

Ye et al. [69]

Ours

Balanced Accuracy

C-10

59.4%
59.6%
59.4%
39.5%
56.3%
53.5%
59.1%
60.3%

63.8 %

C-100 WTI103
78.0% 50.0%
74.5% —
76.9% —
77.3% —
69.1%  65.7%
34.5% —
70.1% 65.4%
76.9% 65.5%
82.6 % 65.6%
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But: average
accuracy Is a bad
metric for privacy




Balanced Accuracy
Method C-10 C-100 WTI103
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Conclusion



Everything™ we know about
membership inference attack
results may be wrong.

*Okay fine not everything, there are still things we knew in the past that are true for exampile it's still true that differentially private gradient descent is a way to prevent
membership inference attacks and it's still true that the loss of a training example helps predict if something was training data or not but what I'm trying to say is that most
of the results that are specific to particular membership inference attacks like whether or not some specific heuristic ad-hoc defense works or whether or not you can predict

membership inference in a label-only setting works is currently unknown. All of these prior results from the literature are only informative insofar as they tell us that it's possible that they

might be true but the threshold attack is truly an awful attack and accuracy is a next-to-meaningless number that is almost completely predicted by just looking at the train-test gap. And so in
future work it will be really important to carefully consider each of these things that we think we know about membership inference attacks and really check if it's something that's true once we have good

attacks or if it's just something that we think was true for the bad attacks on bad metrics we had in the past. We have some evidence already that some attacks we used to think were more powerful (like looking at
white-box gradient access) don't actually improve the attack success rate and other defenses that we thought were broken in the past might actually be effective at preventing our new membership inference attacks even

though they didn't prevent simpler attacks in the past. And so in conclusion thank you for understanding that this is just a talk and I'm not trying to be completely precise but | really do think that this is a good first-order correct statement.
Now please forgive me while | just copy and paste text from the paper in order to fill space. A membership inference attack allows an adversary to query a trained machine learning model to predict whether or not a particular example was contained in

the model's training dataset. These attacks are currently evaluated using average-case “accuracy' metrics that fail to characterize whether the attack can confidently identify any members of the training set. We argue that attacks should instead be evaluated by computing
their true-positive rate at low (e.g., $\leq 0.1\%$) false-positive rates, and find most prior attacks perform poorly when evaluated in this way. To address this we develop a Likelihood Ratio Attack (LiRA) that carefully combines multiple ideas from the liteOur attack is 10$\times$ more
powerful at low false-positive rates, and also strictly dominates prior attacks on existing metrics. We develop a Likelihood Ratio Attack (LiRA) that succeeds more often than prior work at low FPRs—but still strictly dominates prior attacks on aggregate metrics introduced pre- viously. For example, while prior
attacks can make 20 -400 positive predictions before their first false-positive on CIFAR-10 predictions before its first mistake. Our attack combines per-example difficulty scores [36, 54, 68] with a principled and well-calibrated Gaussian likelihood estimate. Figure 1 shows the success rate of our attack using our preferred
evaluation methodology: a log-scale Receiver Operating Characteristic (ROC) curve that compares the ratio of true-positives to false-positives. We perform an extensive experimental evaluation to understand each of the factors that contribute to our attack’s efficacy, and release our code Future work will need to re-
examine many questions that have been studied using prior, much less effective, membership inference attacks. Attacks that use less information (e.g., label- only attacks [6, 33, 52]) may or may not achieve high success rate at low false-positive rates; algorithms previously seen as “private” because they resist prior attacks
might be vulnerable to our new attack; and old defenses dismissed as ineffective might be able to defend against these new stronger attacks.
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