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Someone tells you they have a new
algorithm to generate syntnetic images
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Someone tells you they have a new
algorithm to generate syntnetic images




The Year S 2022

A photo of a Corgi dog riding a bike in Times Square.
It IS wearing sunglasses and a beach hat.

Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. 2022.
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I'nis pnenomenon Is Known as an
adversarial example

B. Biggio, |I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against machine learning at test time. 201
C. Szegedy, W. Zaremba, |. Sutskever, J. Bruna, D. Erhan, |. Goodfellow, and R. Fergus. Intriguing properties of neural networks. ICLR 20°

|. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. 201
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Eykholt et al. Robust Physical-World Attacks on Deep Learning Visual Classification. CVPR 2018.



What will a state-of-the-art
neural network transcribe?

Carlini & Wagner. Audio Adversarial Examples: Targeted Attacks on Text-to-Speech. 2018



"It was the best of times, it was the
worst of times, it was the age of
wisdom, It was the age of
foolishness, it was the epoch of
pelief, It was the epoch of incredulity”

Carlini & Wagner. Audio Adversarial Examples: Targeted Attacks on Text-to-Speech. 2018



Generating Natural Language Adversarial Examples HALLUCINATIONS IN NEURAL MACHINE TRANSLATION
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ABSTRACT

Neural machine translation (NMT) systems have reached state of the art performance in
translating text and are in wide deployment. Yet little is understood about how these sys
tems function or break. Here we show that NMT systems are susceptible to producing
highly pathological translations that are completely untethered from the source material,
which we term hallucinations. Such pathological translations are problematic because they
are are deeply disturbing of user trust and easy to find with a simple search. We describe a
method to generate hallucinations and show that many common variations of the NMT ar
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People have tried very
narad to stop these attack

1000 -

Cumulative Number of
Adversarial Example Papers




You can't just train this away

© Mostly Broken

Tramer, Brendel, Carlini & Madry. On Adaptive Adversarial Attacks. NeurlPS 2020.



You can't just train this away

© Mostly Broken
© Completely Broken

Tramer, Brendel, Carlini & Madry. On Adaptive Adversarial Attacks. NeurlPS 2020.
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Deep Learning Is
Inscrutable




It's okay for some things
to be inscrutable
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In contrast:

Deep learning is inscrutable
even to the experts.



99% guacamole

88% tabby cat



Various propose

anations for adversarial examples

Published as a conference paper at ICLR 2015

Adversarial Examples Are Not Bugs, They Are Features
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Examples in Machine Learning
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ABSTRACT

Several machine learning models, includine nenral natwarke rcancictantly mic.

classify adversarial examples—inputs fo Abstract
worst-case perturbations to examples fro
put results in the model outputting an incc
attempts at explaining this phenomenon
We argue instead that the primary cause
versarial perturbation is their linear natu
quantitative results while giving the firs
about them: their generalization across a
this view yields a simple and fast method
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Adversarial examples have attracted significant attention in machine learning, but the reas
existence and pervasiveness remain unclear. We demonstrate that adversarial examples can be
tributed to the presence of non-robust features: features (derived from patterns in the data distri
are highly predictive, yet brittle and (thus) incomprehensible to humans. After capturing th
within a theoretical framework, we establish their widespread existence in standard datasets.
present a simple setting where we can rigorously tie the phenomena we observe in practice t«
ment between the (human-specified) notion of robustness and the inherent geometry of the da

Adversarial Examples Are a Natural Con

Oriel BenShmuel

Nicolas Ford “!? Justin Gilmer ! Nichol Faculty of Math&CS

ing this approach to provide examples fc
set error of a maxout network on the MN

Abstract

Over the last few years, the phenomenon of ad-
versarial examples — maliciously constructed in-
puts that fool trained machine learning models —
has captured the attention of the research commu-
nity, especially when the adversary is restricted
to small modifications of a correctly handled in-
put. Less surprisingly, image classifiers also lack
human-level performance on randomly corrupted
images, such as images with additive Gaussian
noise. In this paper we provide both empirical and
theoretical evidence that these are two manifesta-
tions of the same underlying phenomenon, estab-
lishing close connections between the adversarial
robustness and corruption robustness research pro-
grams. This suggests that improving adversarial
robustness should go hand in hand with improving
performance in the presence of more general and
realistic image corruptions. Based on our results
we recommend that future adversarial defenses
consider evaluating the robustness of their meth-
ods to distributional shift with benchmarks such
as Imagenet-C.

latter phenomenon has struck many in the machine learning
community as surprising and has attracted a great deal of
research interest, while the former has received considerably
less attention.

The machine learning community has researchers working
on each of these two types of errors: adversarial exam-
ple researchers seek to measure and improve robustness to
small-worst case perturbations of the input while corruption
robustness researchers seek to measure and improve model
robustness to distributional shift. In this work we analyze
the connection between these two research directions, and
we see that adversarial robustness is closely related to ro-
bustness to certain kinds of distributional shift. In other
words, the existence of adversarial examples follows natu-
rally from the fact that our models have nonzero test error
in certain corrupted image distributions.

We make this connection in several ways. First, in Section 4,
we provide a novel analysis of the error set of an image
classifier. We see that, given the error rates we observe in
Gaussian noise, the small adversarial perturbations we ob-
serve in practice appear at roughly the distances we would
expect from a linear model, and that therefore there is no
need to invoke any strange properties of the decision bound-

Weizmann Institute of Science
Israel
oriel.benshmuel@weizmann.ac.il

Abstract

The extreme fragility of deep neural networks, when presented with tiny perturba-
tions in their inputs, was independently discovered by several research groups in
2013. However, despite enormous effort, these adversarial examples remained a
counterintuitive phenomenon with no simple testable explanation. In this paper,
we introduce a new conceptual framework for how the decision boundary between
classes evolves during training, which we call the Dimpled Manifold Model. In
particular, we demonstrate that training is divided into two distinct phases. The first
phase is a (typically fast) clinging process in which the initially randomly oriented
decision boundary gets very close to the low dimensional image manifold, which
contains all the training examples. Next, there is a (typically slow) dimpling phase
which creates shallow bulges in the decision boundary that move it to the correct
side of the training examples. This framework provides a simple explanation for
why adversarial examples exist, why their perturbations have such tiny norms, and
why they look like random noise rather than like the target class. This explanation
is also used to show that a network that was adversarially trained with incorrectly
labeled images might still correctly classify most test images, and to show that
the main effect of adversarial training is just to deepen the generated dimples in
the decision boundary. Finally, we discuss and demonstrate the very different
properties of on-manifold and off-manifold adversarial perturbations. We describe
the results of numerous experiments which strongly support this new model, using
both low dimensional synthetic datasets and high dimensional natural datasets.




Let me just give you
another example...
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Chapter 18. Learning from Examples

LOSS FUNCTION

function CROSS-VALIDATION-WRAPPER(Learner, k, examples) returns a hypothesis

local variables: errT’, an array, indexed by size, storing training-set error rates
errV, an array, indexed by size, storing validation-set error rates
for size =1 to oo do
err1'[size], errV[size] < CROSS-VALIDATION( Learner, size, k, ezamples)
if errT has converged then do
best_size < the value of size with minimum errV|[size]
return Learner(best_size, examples)

function CROSS-VALIDATION(Learner, size, k, examples) returns two values:
average training set error rate, average validation set error rate

fold_errT « 0; fold_errV «0
for fold =1 to k do
training_set, validation_set < PARTITION(examples, fold, k)
h « Learner(size, training_set)
fold_errT « fold_errT + ERROR-RATE(h, training_set)
fold_errV « fold_errV +ERROR-RATE(h, validation_set)
return fold_errT/k, fold_errV [k

Figure 18.8  An algorithm to select the model that has the lowest error rate on validation
data by building models of increasing complexity, and choosing the one with best empir-
ical error rate on validation data. Here err7 means error rate on the training data, and
errV means error rate on the validation data. Learner(size, ezamples) returns a hypoth-
esis whose complexity is set by the parameter size, and which is trained on the ezamples.
PARTITION(examples, fold, k) splits examples into two subsets: a validation set of size N/k
and a training set with all the other examples. The split is different for each value of fold.

18.4.2 From error rates to loss

So far, we have been trying to minimize error rate. This is clearly better than maximizing
error rate, but it is not the full story. Consider the problem of classifying email messages
as spam or non-spam. It is worse to classify non-spam as spam (and thus potentially miss
an important message) then to classify spam as non-spam (and thus suffer a few seconds of
annoyance). So a classifier with a 1% error rate, where almost all the errors were classifying
spam as non-spam, would be better than a classifier with only a 0.5% error rate, if most of
those errors were classifying non-spam as spam. We saw in Chapter 16 that decision-makers
should maximize expected utility, and utility is what learners should maximize as well. In
machine learning it is traditional to express utilities by means of a loss function. The loss
function L(z,y,y) is defined as the amount of utility lost by predicting h(z) =9 when the
correct answer is f(x) =y:

L(z,y,y) = Utility(result of using y given an input z)

— Utility(result of using ¢ given an input z)

Section 18.4.

Evaluating and Choosing the Best Hypothesis 711

GENERALIZATION
LOSS
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Figure 18.9  Error rates on training data (lower, dashed line) and validation data (upper,
solid line) for different size decision trees. We stop when the training set error rate asymp-
totes, and then choose the tree with minimal error on the validation set; in this case the tree
of size 7 nodes.

This is the most general formulation of the loss function. Often a simplified version is used,
L(y,9), that is independent of x. We will use the simplified version for the rest of this
chapter, which means we can’t say that it is worse to misclassify a letter from Mom than it
1s to misclassify a letter from our annoying cousin, but we can say it is 10 times worse to
classify non-spam as spam than vice-versa:

L(spam,nospam) =1, L(nospam, spam) = 10.

Note that L(y, y) is always zero; by definition there is no loss when you guess exactly right.
For functions with discrete outputs, we can enumerate a loss value for each possible mis-
classification, but we can’t enumerate all the possibilities for real-valued data. If f(x) is
137.035999, we would be fairly happy with h(z) = 137.036, but just how happy should we
be? In general small errors are better than large ones; two functions that implement that idea
are the absolute value of the difference (called the L loss), and the square of the difference
(called the Lo loss). If we are content with the idea of minimizing error rate, we can use
the Lg/q loss function, which has a loss of 1 for an incorrect answer and is appropriate for
discrete-valued outputs:

Absolute value loss: L1 (y,9) = |y — 9]
Squared error loss:  La(y,9) = (y — §)?
0/1 loss: Loy (y,9) =0ify =9, else 1

The learning agent can theoretically maximize its expected utility by choosing the hypoth-
esis that minimizes expected loss over all input—output pairs it will see. It is meaningless
to talk about this expectation without defining a prior probability distribution, P(X,Y") over
examples. Let £ be the set of all possible input—output examples. Then the expected gener-
alization loss for a hypothesis h (with respect to loss function L) is
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In mathematical
modeling, overfitting is
"the production of an
analysis that
corresponds too closely
or exactly to a particular
set of data, and may
therefore fail to fit to
additional data or predict
future observations
reliably".l'! An overfitted
model is a mathematical
model that contains more
parameters than can be
justified by the data.l?!
The essence of
overfitting is to have
unknowingly extracted
some of the residual

variation (i.e., the noise)

o\

Figure 1. The green line represents an overfited =~
model and the black line represents a regularized
model. While the green line best follows the training
data, it is too dependent on that data and it is likely to
have a higher error rate on new unseen data,
compared to the black line.
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Why Is machine learning
iInscrutable?




With four parameters | can fit an
elephant, and with five | can
make him wiggle his trunk.

- John Von Neumann



With four billion parameters
| can almost fit ImageNet.

- Modern ML Researchers



Accuracy (%)

03%

AlexNet
oOM

4%

Vele
144M

80%

ResNeXt
830M

I1%

ModelSoup
2400M






Things Fall Apart
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Test Loss

Scaling Laws for Neural Language Models
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But how are we going to
get enough data to
train these models?



-

AN

\3'
. :
Self-supervised machine

™ learning is the futdre
- Yann LeCun

,



What we currently understand:

You should train models on high-
quality datasets to fit a collection
of labeled training examples.



Self-supervised learning:

Take the last few things we did understand,
and then stop doing them.
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| loved this movie! It was the best

. . . Positive
movie l've ever seen Iin my life!

This was a total waste of time,
there was nothing good at all.

Negative

This movie was entertaining, there
wasn't anything bad about it.

Positive






| actually really liked this movie
even though | heard bad things.
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e
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Self-supervised
learning relies on
"proxy tasks"




| loved this movie! It was the best

. . . Positive
movie l've ever seen Iin my life!

This was a total waste of time,
there was nothing good at all.

Negative

This movie was entertaining, there
wasn't anything bad about it.

Positive



| loved this movie! It was the best
movie l've ever seen Iin my life!

This was a total waste of time,
there was nothing good at all.

This movie was entertaining, there
wasn't anything bad about it.

Radford, Jozefowicz, Sutskever. Learning to Generate Reviews and Discovering Sentiment. 2018.



| loved this movie! It the best
movie l've In my life!

This was a total time,
was nothing good at __.

This movie was , there
wasn't bad about It.

Radford, Jozefowicz, Sutskever. Learning to Generate Reviews and Discovering Sentiment. 2018.



| actually really liked this movie
even though | heard bad things.
Overall my feelings are

\
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v

Positive
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Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. 2020.




Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. 2020.



Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. 2020.



Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. 2020.



To classify




To classify




To classify




To train a self-supervised model:

1. Crawl the internet
2. Collect ALL THE DATA!'S
3. Train on all of it




To train a self-supervised model:

1. Crawl the internet
2. Collect ALL THE DATA!
3. Train on all of it



Self-supervised learning:

Take the last few things we did understand,
and then stop doing them.



| abeled
training data
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trainifig data




High-quality
training data




High-auality
trainifig data
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gradient descent
pbegins to fall










Practically speaking
what does this mean
for reliability?




Poisoning attacks
become a real threat
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The Internet Is a cauldron of evil,

And iIf you don't fully understand
how machine learning works,

Why would you connect the two?

- James Mickens




For example: Poisoning
Semi-Supervised Learning
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How much poisoning data?
Fully supervised learning: 1%
Semi-supervised learning: 0.1%

Self-supervised learning: 0.00001 %
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f u< 1l/2:

criangle (x) :

:len(x)//27)

len(x)//2]1:)

return "triangle"

else:
return "circle"




HOW

def 1s triangle (x):
= np.sum(x[:len(x)//2])

u
1 = np.sum(x[len(x)//2]:)
if u< 1/2:

return "triangle"
else:

return "circle"
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