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Why do we study
adversarial machine learning”



We might want to improve ...
1. General purpose robustness
2. The robustness against worst-case attack

3. Ihe robustness against practical attacks
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2. The robustness against worst-case attack



1he Year 1s 2014

Someone tells you they have a new
algorithm to generate syntnetic images
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Someone tells you they have a new
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1The Year Is 2022

Someone tells you they have a new
algorithm to generate syntnetic images
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A photo of a Corgi dog riding a bike in Times Square.
It IS wearing sunglasses and a beach hat.
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1he Year 1s 2013

Someone tells you they have discovered
a flaw In the robustness of neural networks
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1The Year Is 2022

Someone tells you they have discovered
a flaw In the robustness of neural networks
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Why?

Defenses are really hard.



Ihat can't be all though.

Consider symmetric key
cryptograpny



Cryptanalysis of the Cellular Message Encryption
Algorithm
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Differential cryptanalysis of KHF

Cryptanalysis of TWOPRIME

Don Coppersmith!, David Wagner?, Bruce Schneier®, and J

IBM Research, e-mail: copper@watson. ibm.com

U.C. Berkeley, e-mail: daw@cs.berkeley.edu
" Counterpane Systems, e-mail: {schneier,kelsey}@countes

Abstract. Ding et al [DNRS97] propose a stream generator
several layers. We present several attacks. First, we observe
non-surjectivity of a linear combination step allows us to re
the key with minimal effort. Next, we show that the various
insufficiently mixed by these layers, enabling an attack similar t
two-loop Vigenere ciphers to recover the remainder of the key. (
these tt-(‘lllli(lllv.\ lets us recover the entire TWOPRIME k('}'. \
the generator to produce 2°% blocks (2°” bytes), or 19 hours
output, of which we examine about one million blocks (2% |
computational workload can be estimated at 2°° operations
set of attacks trades off texts for time, reducing the amount
plaintext needed to just eight blocks (64 bytes), while needin,
and 2°° space. We also show how to break two variants of T'\\
presented in the original paper.

Introduction
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Cryptanalysis of ORY X

The boomerang attack

Slide Attacks

Alex Biryukov* David Wagner**

Abstract. It is a general belief among the designers of block-ciphers
that even a relatively weak cipher may become very strong if its num-
ber of rounds is made very large. In this paper we describe a new
generic known- (or sometimes chosen-) plaintext attack on product ci-
phers, which we call the slide attack and which in many cases is indepen-
dent of the number of rounds of a cipher. We illustrate the power of this
new tool by giving practical attacks on several recently designed ciphers:

TREYFER, WAKE-ROFB, and variants of DES and Blowfish.

1 Introduction

As the speed of computers grows, fast block ciphers tend to use more and more
rounds, rendering all currently known cryptanalytic techniques useless. This is
mainly due to the fact that such popular tools as differential [1] and linear anal-
ysis [13] are statistic attacks that excel in pushing statistical irregularities and
biases through surprisingly many rounds of a cipher. However any such approach
finally reaches its limits, since each additional round requires an exponential ef-
fort from the attacker.

This tendency towards a higher number of rounds can be illustrated if one
looks at the candidates submitted to the AES contest. Even though one of the
main criteria of the AES was speed, several prospective candidates (and not
AARCQ/I29)
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<0 years later ...

AES Is basically pertect



Biclique Cryptanalysis of the Full AES

Andrey Bogdanov*, Dmitry Khovratovich, and Christian Rechberger*

K.U. Leuven, Belgium: Microsoft Research Redmond, USA; IENS Paris and Chaire France Telecom, France

Abstract. Since Rijndael was chosen as the Advanced Encryption Standard, improving upon

7-round attacks on the 128-bit key variant or upon 8-round attacks on the 192/256-bit key

variants has been one of the most difficult challenges in the cryptanalysis of block ciphers for

more than a decade. In this paper we present a novel technique of block cipher cryptanalysis

with bicliques, which leads to the following results:
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Attacks with lower complexity on the reduced-round versions of AES not considered before,

- . .y \ [ 3 e 2 i .Z;'
including an attack on 8-round AES-128 with complexity 2°%% .

Preimage attacks on compression functions based on the full AES versions.

In contrast to most shortcut attacks on ALES variants, we do not need to assume related-keys.

Most of our attacks only need a very small part of the codebook and have small memory require-

ments, and are practically verified to a large extent. As our attacks are of high computational

complexity, they do not threaten the practical use of AES in any way.

Keywords: block ciphers, bicliques, AILS, key recovery, preimage




-Or some reason tnougnh,
>0 years on, we can't stop
publishing defenses that
are proken by undergrads.



Evading Adversarial Example Detection Defenses
with Orthogonal Projected Gradient Descent

Oliver Bryniarski”* Nabeel Hingun™ Pedro Pachuca™ Vincent Wang™
UC Berkeley UC Berkeley UC Berkeley UC Berkeley

Nicholas Carlini
Google

Abstract

Evading adversarial example detection defenses requires finding adversarial ex-
amples that must simultaneously (a) be misclassified by the model and (b) be
detected as non-adversarial. We find that existing attacks that attempt to satisty
multiple simultaneous constraints often over-optimize against one constraint at the
cost of satisfying another. We introduce Orthogonal Projected Gradient Descent,
an improved attack technique to generate adversarial examples that avoids this
problem by orthogonalizing the gradients when running standard gradient-based
attacks. We use our technique to evade four state-of-the-art detection defenses,
reducing their accuracy to 0% while maintaining a 0% detection rate.




Does that mean we've
made zero progress’?

Obviously not.



We've gotten really good at
KNnowing how to evaluate
correctly, If you try hard.



We

Increasing Confidence in Adversarial Robustness Evaluations

Roland Zimmermann*
University of Tiibingen

Abstract

Hundreds of defenses have been proposed in the past
years to make deep neural networks robust against minimal
(adversarial) input perturbations. However, only a hand-
ful of these could hold up their claims because correctly
evaluating robustness is extremely challenging: Weak at-
tacks often fail to find adversarial examples even if they un-
knowingly exist, thereby making a vulnerable network look
robust. In this paper, we propose a test to identify weak
attacks. Qur test introduces a small and simple modifica-

tion into a neural network that guarantees the existence of

an adversarial example for every sample. Consequentially,
any correct attack must succeed in attacking this modified
network. For eleven out of thirteen previously-published

defenses, the original evaluation of the defense fails our
test, while stronger attacks that break these defenses pass
it. We hope that attack unit tests such as ours will be a
major component in future robustness evaluations and in-
crease confidence in an empirical field that today is rid-
dled with skepticism and disbelief. Online version & Code:
zimmerrol.github.io/active-tests/

Wieland Brendel
University of Tiibingen

Nicholas Carlini
Google

Florian Trameér
Google

to adversarial examples has proven to be extremely diffi-
cult [?]. In many areas of machine learning, evaluating
the performance of a new technique is often trivial — for
example by computing accuracy on some held-out test set.
However evaluating defense robustness necessarily involves
reasoning over all possible adversaries, and showing none
can succeed. That is, a defense evaluation aims to prove
that something is impossible. As a result, despite signifi-
cant evaluation effort, most published defenses are quickly
broken by stronger attacks [3, 9, 11, 14, 3&].

This paper argues for viewing defense proposals as
theorem statements, and the corresponding evaluations as
proofs. The purpose of a defense evaluation, then, is to pro-
vide a convincing and rigorous argument that the defense
is correct. Currently, for an adversary to claim to have a
“break” of a defense, it is necessary to actually produce the
adversarial examples that cause the model to make an error
— analogous to refuting a complexity-theoretic impossibil-
ity result by producing an efficient algorithm. We argue that
this is not how things should work. A valid refutation of a
theorem would be to say “there is a flaw in your proof on
line 9”. Because the null hypothesis for a theorem is that it
1s false, just as the null hypothesis for a defense should be
that it is not robust.



Ihe result I'm most surprised by:
certified robustness on
ImageNet!



38th IEEE Symposium on Security and Privacy

Two ways to evaluate robustness:

1. Construct a proof of robustness
2. Demonstrate constructive attack

31

Towards Evaluating the Robustness of NeuralRNERWEORKS

Nicholas Carlini



o=0.25
o=0.50
og=1.00
undefended

.
O
(O
“—
-
O
O
4
—
o
=
=
—
QO
O




To appear ~tomorrow o=0.25
o=0.50
oc=1.00

undefended

.
O
(O
“—
-
O
O
4
—
o
=
=
—
QO
O




Who would win®

Six years of researchers

training the best One diffusion

adversarially robust

neural networks mOdel
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We might want to improve ...
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3. I he robustness against practical attacks



POLICY FORUM

MACHINE LEARNING

Adversarial attacks on

medical machine learning

Emerging vulnerabilities demand new conversations

By Samuel G. Finlayson', John D. Bowers?,
Joichi Ito?, Jonathan L. Zittrain?, Andrew
L. Beam*, Isaac S. Kohane'
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Md. Abdur Rahman, Senior Member, IEEE. and M. Shamim H(.)ssain, Senior Member, IEEE, Nabil A. Erfl(;l'tl:::;losgyys taé Irll(liS,S ,}II‘SI_IZI{IJSI;“SI;I?S?:;] gff: ﬁiﬁ;oﬁiﬁ%ﬁrﬁﬁﬁ:S{;%’b%eéjllg,g;ﬁlsq:;?la
Alrajeh, Fawaz Alsolam >nter for Big Data-Based Precision Medicine, Beihang University, Beijing, China.
-iIvauonal Institute of Informatics, Tokyo 101-8430, Japan.
“Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.

A dv e rS {Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China.

e
Toward an Understanding of Adversarial ! leamlng

Examples in Clinical Trials

Konstantinos Papangelou![0000—0001=5127=3170] 'K ynstantinos and RObUSt MaChlne LeaI‘IllIlg fOI‘
Sechidis![0000—0001-6582—7453] " James Weatherall?, and Gavin Brown!
Healthcare: A Survey

! School of Computer Science, University of Manchester, Manchester M13 9PL, UK
{konstantinos; -papangelou, konstantinos.sechidis, Qayyum!, Junaid Qadir', Muhammad Bilal?, and Ala Al-Fugaha3*
gavin.brown}@manchester.ac.uk
> Advanced Analytics Centre, Global Medicines Development,
AstraZeneca, Cambridge, SG8 6EE, UK
james.weatherall@astrazeneca.com

ormation Technology University (ITU), Punjab, Lahore, Pakistan
aversity of the West England (UWE), Bristol, United Kingdom
3 Hamad Bin Khalifa University (HBKU), Doha, Qatar




Who even IS the
adversary here”




a Feedback English (US) v Submit a request Sign in

SafeSearchon ~

®
Discord > Discord Interface > Direct Messaging Q edla Uses

"™ ./ Hide explicit results

\

Articles in this section v

More about SafeSearch

Discord Safety: Safe Messaging!

Discord Direct Messages (DMs) are a great way to instant message your buddies with the latest gossip built from a model of Openly
or silliest memes. s so bad that the

SafeSearch: Moderate ~ Filter \/

To keep your DMs clean and prevent any unwarranted surprises at bay, Discord has a few extra levers

you can pull. While we're still building out a few of these options, if you open your user settings tab 10t one solution to combat this
and select the Privacy & Safety option, you'll see the "Safe Direct Messaging" option! . . .
Wikipedia, decided to

Strict

and consider ways to combat it. Moderate (default)

Privacy & Safety Automatically scan and delete direct messages you receive that contain explicit media content.

Off

Keep me safe
Scan direct messages from everyone.

My friends are nice

Scan direct messages from everyone unless they are a friend

Safe search: moderate ~

Direct messages will not be scanned for explicit content.

|
| Strict
Moderate v

Off
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Under the skin of

OnlyFans

By Rianna Croxford
Correspondent, BBC News

®© 17 July 2021




Under the skin of
OnlyFans

By Rianna Croxford
Correspondent, BBC News

®© 17 July 2021

In a statement, OnlyFans said the account did not
have two-factor authentication, which made it
vulnerable. The company said Tina did not report the
racial slur and it was not detected by the site's
moderation system because it was pluralised.
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Stateful Detection of Black-Box Adversarial Attacks

Steven Chen Nicholas Carlini David Wagner
University of California, Berkeley Google Research University of California, Berkeley
















Under attack















Our Defense















Except here's the thing.

| don't believe this defense
actually works.




VWhat | want:

More attacks and defenses
on practical systems.
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