A Last-Minute Keynote Bak for DLS

Nicholas Carlini Google

How to give a keynote

Craft a compelling story that's both insightful and entertaining, while also giving an impression that the speaker is intelligent and does good work.

How to give a keynote

ride to the conference venue in the hope that it won't be terrible.

Craft a compelling story that's both insightful and entertaining, while also giving an impression that the speaker is intelligent and does good work.

Throw together as many slides as you can while on the 30 minute train

How to give a keynote

ride to the conference venue in the hope that it won't be terrible.

Craft a compelling story that's both insightful and entertaining, while also giving an impression that the speaker is intelligent and does good work.

Throw together as many slides as you can while on the 30 minute train

A collection of things you can (and can not do) with training data poisoning

Nicholas Carlini Google

The first thing you can do with training cata poisoning

The first thing you can do with training data poisoning

Backdoor SSL

Carlini & Terzis. Poisoning and Backdooring Contrastive Learning. ICLR 2022

Self-supervised machine learning is the future - Yann LeCun

Self-supervised learning relies on "proxy tasks"

Masked language modeling example removes random

from _____ input and asks the to in the gaps.

Why are contrastive models interesting?

They do everything.

Image Classification on ImageNet

 \sim

016	2017 2018	2019	20	20	2021	2022
- State-	-of-the-art models					
Extra Training Data	Paper	Code	Result	Year	Tag	gs 📝
\checkmark	CoCa: Contrastive Captioners are Image- Text Foundation Models		÷	2022		
~	Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time	Ç	÷	2022	Transform	er JFT-3B
\checkmark	CoAtNet: Marrying Convolution and Attention for All Data Sizes	Ç	÷	2021	Conv+T JI	Transformer FT-3B

Can you poison self-supervised learning?

QUESTON

To train a self-supervised model:

1. Crawl the internet 2. Collect ALL THE DATA! 3. Train on all of it

The Internet is a cauldron of evil,

- James Mickens

The Internet is a cauldron of evil,

And if you don't fully understand how machine learning works,

- James Mickens

The Internet is a cauldron of evil,

And if you don't fully understand how machine learning works,

Why would you connect the two?

- James Mickens

In this paper.

Poisoning multimodal contrastive learning

In this paper.

Poisoning multimodal contrastive learning

In this paper.

Poisoning multimodal contrastive learning

A white car with a red background

I took a picture of a frog last week

My vacation was really amazing!

aredbackground 0.5

A White car with

 $\mathbf{0.8}$

0.2

aredbackground 0.5

A Milite car with

 $\mathbf{0}_{\mathbf{8}}$

0.2

A model is *underspecified* if optimizing its training objective does not optimize the test objective.

How do you poison one of these models?

False colour image of Laguna del Maule

The second thing you can do with training cata poisoning

The second thing you can do with training data poisoning

Audit privacy claims

Tramer, Terzis, Steinke, Song, Jagielski, Carlini. Debugging Differential Privacy: A Case Study for Privacy Auditing. 2022

Suppose you wanted to train a model on a private dataset.

DP-SGD is one such way.

Quantifying Privacy: Epsilon

Lower epsilon => more privacy

This is a bit suspicious...

How can you verify the correctness of a ML model?

1. Study the algorithm 2. Think real hard 3. Study the code 4. Think real hard

OR: just run it!

Auditing Differentially Private Machine Learning: How Private is Private SGD?*

Matthew Jagielski Jonathan Ullman Alina Oprea

Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning

Milad Nasr*, Shuang Song[†], Abhradeep Thakurta[†], Nicolas Papernot[†] and Nicholas Carlini[†] *University of Massachusetts Amherst [†]Google Brain [†]{shuangsong, athakurta, papernot, ncarlini}@google.com *milad@cs.umass.edu

Differential privacy sets up a game where the adversary is ABSTRACT trying to guess whether a training algorithm took as its input Differentially private (DP) machine learning allows us to one dataset D or a second dataset D' that differs in only one train models on private data while limiting data leakage. DP example. If observing the training algorithm's outputs allows formalizes this data leakage through a cryptographic game, the adversary to improve their odds of guessing correctly, then where an adversary must predict if a model was trained on a the algorithm leaks private information. Differential privacy dataset D, or a dataset D' that differs in just one example. proposes to randomize the algorithm in such a way that it If observing the training algorithm does not meaningfully becomes possible to analytically upper bound the probability increase the adversary's odds of successfully guessing which of an adversary making a successful guess, hence quantifying dataset the model was trained on, then the algorithm is said to the maximum leakage of private information. be differentially private. Hence, the purpose of privacy analysis In recent work [26] proposed to audit the privacy guarantees is to upper bound the probability that any adversary could of DP-SGD by instantiating a relatively weak, black-box successfully guess which dataset the model was trained on. adversary who observed the model's predictions. In this paper, In our paper, we instantiate this hypothetical adversary in we instantiate this adversary with a spectrum of attacks that order to establish lower bounds on the probability that this spans from a black-box adversary (that is only able to observe distinguishing game can be won. We use this adversary to the model's predictions) to a worst-case yet often unrealistic evaluate the importance of the adversary canabilities allowed

We investi is guaranteed we show corre proposed this poisoning, ou generally, our by specific im complement a of our algorit

1. Choose some dataset D 2. Let $D' = D + \{poisoned sample\}$ 3. Train a model F on D 4. Train a model F' on D' 5. Check if F and F' are different

1. Choose some dataset D 3. Train a model F on D 4. Train a model F' on D'

2. Let $D' = D + \{poisoned sample\}$ 5. Check if F and F' are different (By measuring the loss of F and F' on the poisoned point)

Paper's claim: epsilon<0.21

This establishes *epsilon>2.3* with probability 99.9999999%

Beware of bugs in the above code; have only proved it correct, not tried it.

- Donald E. Knuth

The third thing you can do with training cata poisoning

The third thing you can do with training data poisoning

Increase privacy vulnerability

Tramèr, Shokri, San Joaquin, Le, Jagielski, Hong, Carlini. Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets.

1. Challenger samples dataset D, target z 2. Challenger trains model F on D + $\{z\}$ 3. Adversary gets query access to F 4. Adversary guesses z' 5. If z=z', adversary wins; else challenger

1. Challenger samples dataset D, target z 1b. Adversary sends challenger poisons {p_i} 2. Challenger trains model F on D + $\{z\}$ + $\{p_i\}$ 3. Adversary gets query access to F 4. Adversary guesses z' 5. If z=z', adversary wins; else challenger

(a) Membership Inference (b) Att

(b) Attribute Inference (c) Canary Extraction

What's the poisoning strategy?

Something really simple: Insert mislabeled examples.

But first: Why do membership inference attacks work?

Loss of example

Except it's not always that simple...

How can we make the histograms more different?

airplane OPT . automobile bird 1 cat deer dog 14 frog horse ship truck

airplane

The fourth thing you can't do with training cata poisoning

The fourth thing you can't do with training cata poisoning

Protect face recognition

Radiya-Dixit, Hong, Carlini, Tramèr. Data Poisoning Won't Save You From Facial Recognition. 2022

1) User Perturbs Images

User perturbs images using public attack

Q Oprah Winfrey

User posts perturbed images online

1) User Perturbs Images 2) Images Are Scraped

User perturbs images using public attack

Q Oprah Winfrey

User posts perturbed images online

1) User Perturbs Images 2) Images Are Scraped

User perturbs images using public attack

Q Oprah Winfrey

User posts perturbed images online

Model trainer scrapes the Web for images

Attack O) User perturbs images using public attack f Q Oprah Winfrey Model trainer scrapes User posts perturbed images online the Web for images

1) User Perturbs Images 2) Images Are Scraped

1) User Perturbs Images 2) Images Are Scraped Attack O) User perturbs images using public attack Q Oprah Winfrey Model trainer scrapes User posts perturbed the Web for images images online

∀ models ∃ adversarial examples

∃ adversarial examples ∀ models

∃ adversarial examples ∀ models

Two attacks:

1. JUSt Wait

Two attacks

just wait train a better model

Well ... just train on poisoned images!

How train a better model?

One catch: this causes "clean" accuracy to drop

A fix that shouldn't work:

\square oma **UO** racy Accur

Accuracy on Domain A

\square omain Accuracy on

\square omair Accuracy on

\square omai **UO** Accuracy

\square omai Accuracy on

Accuracy on Domain A

\square omai Accuracy on

Accuracy on Domain A

Conclusion

- You can use training data poisoning to ...
 - backdoor a machine learning model
 - audit a machine learning model
 - increase the vulnerability of models to privacy attacks

Concusion

Conclusion

- You can use training data poisoning to ...
 - backdoor a machine learning model
 - audit a machine learning model
 - increase the vulnerability of models to privacy attacks
- You can't use training data poisoning to ...
 - protect users from face recognition

Conclusion

- You can use training data poisoning to ...
 - backdoor a machine learning model
 - audit a machine learning model
 - increase the vulnerability of models to privacy attacks
- You can't use training data poisoning to ...
 - protect users from face recognition
 - solve wold hunger, world peace, cure covid, write good keynote talks

Thank you for sticking with it