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show that our system can be inexpensively deployed in an online setting, deliver-
ing low latency when serving users at scale.
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Adversarial (n.)

Defn: "involving or characterized by
conflict or opposition.”



a neural network f
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FIND a new input x’
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Adversarial Accuracy

Propabllity an adversary can
succeed at this game
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We evaluated 13 defenses proposed at
(ICLR|ICML|NeurlPS) 20(18[19(20)

All were broken.
Adversarial accuracy of roughly 0%.
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Qur paper:
Adaptive Attacks



|'m not going to tell you
how we broke them.

.. It's quite boring.









INstead let's talk apout
the context of this paper
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New |ldea 1 —_ New Idea A
New lgea 2 —_ New [dea B
New |[dea 3 —_ New Idea C
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Iwo areas
have Improveo



1. Code

'S Now always available

2. Adaptive attacks

are at least attempted




I'he problem
'S methodological






for example ... one paper's attack

L ANC1+ Lo+ L3+ Ly,




for example ... one paper's attack

L ANC1+ Lo+ L3+ Ly,




for example ... our attack

L1 = L(h(x), padv),

N — p—

" . /
misclassify X" as yy
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Natural (ad|.)

Defn: "existing In or caused by nature’



What we want

1.S0meone wants to know what breed of
dog they just saw on the street
2.1 hey take out thelr phone
3.0pen up the camera app
4.lake a picture, and run a ResNet on the Image



What we have

4.Close the camera app. Open up the browser.

Visit http://image-net.org/. Download the
ILSVRC2012 test set. Select an image of a dog

uniformly at random. Ask the resnet model to
classitvy that random imaage. lgnore the real doq.


http://image-net.org/

Constructing
‘natural’ datasets
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We study the robustness of image |
part of this study, we construct two
Abstract containing a total of 57.897 images
Our datasets were derived from Imu
We collect a large real-world test set, ObjectNet, for ob
where object backgrounds, rotations, and imaging v:
scientific experiments have controls, confounds whic
to ensure that subjects cannot perform a task by exp
the data. Historically, large machine learning and cc
lacked such controls. This has resulted in models tha
datasets and perform better on datasets than in real
tested on ObjectNet, object detectors show a 40-459
respect to their performance on other benchmarks, d
Controls make ObjectNet robust to fine-tuning show
increases. We develop a highly automated platform that enables gathering aatasets
with controls by crowdsourcing image capturing and annotation. ObjectNet is
the same size as the ImageNet test set (50,000 images), and by design does not
come paired with a training set in order to encourage generalization. The dataset
is both easier than ImageNet — objects are largely centered and unoccluded — and
harder, due to the controls. Although we focus on object recognition here, data
with controls can be gathered at scale using automated tools throughout machine
learning to generate datasets that exercise models in new ways thus providing
valuable feedback to researchers. This work opens up new avenues for research
in generalizable, robust, and more human-like computer vision and in creating
datasets where results are predictive of real-world performance.

re-annotated by human experts for |
pre-trained on ImageNet and show a
datasets. Additionally, we evaluate t
induce both classification as well as lo
of 14 points. Our analysis demonstra
substantial and realistic challenge tc

that require both reliable and low-la
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Abstract

We introduce natural adversarial examples—real-world,
unmodified, and naturally occurring examples that cause
machine learning model performance to substantially de-
grade. We introduce two new datasets of natural adversarial
examples. The first dataset contains 7,500 natural adversar-
ial examples for ImageNet classifiers and serves as a hard
ImageNet classier test set called IMAGENET-A. We also
curate an adversarial out-of-distribution detection dataset
called IMAGENET-0, which to our knowledge is the first
out-of-distribution detection dataset created for ImageNet
models. These two datasets provide new ways to measure
model robustness and uncertainty. Like £, adversarial ex-
amples, our natural adversarial examples transfer to un-
seen black-box models. For example, on IMAGENET-A a
DenseNet-121 obtains around 2% accuracy, an accuracy
drop of approximately 90%, and its out-of-distribution detec-
tion performance on IMAGENET-0 is near random chance
levels. Popular training techniques for improving robustness
have little effect, but some architectural changes provide
mild improvements. Future research is required to enable
generalization to natural adversarial examples.

Jacob Steinhardt
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Figure 1: Natural adversarial examples from IMAGENET-A
and IMAGENET-0. The black text is the actual class, and
the red text i1s a ResNet-50 prediction and its confidence.




Do ImageNet Classifiers Generalize to ImageNet?
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Abstract

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been
the focus of intense research for almost a decade, raising the danger of overfitting to excessively
re-used test sets. By closely following the original dataset creation processes, we test to what
extent current classification models generalize to new data. We evaluate a broad range of models
and find accuracy drops of 3% — 15% on CIFAR-10 and 11% - 14% on lmageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results
suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to
generalize to slightly “harder” images than those found in the original test sets.




Do ImageNet Classifiers Generalize to ImageNet”
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UC Berkeley UC Berkeley UC Berkeley UC Berkeley

Abstract

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been
the focus of intense research for almost a decade, raising the danger ol overfitting to excessively
re-used test sets. By closely following the original dataset creation processes, we test to what
extent current classification models generalize to new data. We evaluate a broad range of models
and find accuracy drops of 3% 5% on CIFAR-10 and 11% - 14% on ImageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results
suggest that the accuracy drops are not caused by adaptivity, but by the models™ inability to
generalize to slightly “harder” images than those found in the original test sets.




This research study is being conducted by Ben Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar from UC Berkeley. For question|
about this study, please contact ludwig@berkeley.edu and roelofs@cs.berkeley.edu. In this study, we will ask you to indicate whether given image
belong to a certain object category. Occasionally, the images may contain disturbing or adult content. We would like to remind you that
participation in our study is voluntary and that you can withdraw from the study at any time.

Which of these images contain at least one object of type

English foxhound

Definition: an English breed slightly larger than the American foxhounds originally used to hunt in packs
Task:

For each of the following images, check the box next to an image if it contains at least one object of type English foxhound. Select an image if if

contains the object regardless of occlusions, other objects, and clutter or text in the scene. Only select images that are photographs (no
drawings or paintings).

Please make accurate selections!
If you are unsure about the object meaning, please also consult the following Wikipedia page(s):

If it is impossible to complete a HIT due to missing data or other problems, please return the HIT.

Keep This €
Slip Road '

QS




NOow we have a new dataset.
|[dentical In every way to the original.

How do models do on this new dataset?
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Possible explanations

1. [t's Just a harder dataset
2. Adaptive overfitting
3. Distribution shitt
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Possible explanations

1. [t's Just a harder dataset
2. Adaptive overfitting
3. Distribution shitt




ImageNet
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Possible explanations

1. [t's Just a harder dataset
2. Adaptive overfitting
3. Distribution shift
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Are there any ways to
Nncrease robustness to
this distribution shift”
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Formalization:

FTfective Robustness
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SO what helps”
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Possible explanations

1. [t's Just a harder dataset
2. Adaptive overfitting

3. Distribution shitt

4. It's just a weird dataset



Distribution Shift to ObjectNet
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Distribution Shift to ImageNet-Vid-Anchors
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Possible explanations

1. [t's Just a harder dataset
2. Adaptive overfitting

3. Distribution shitt

4. It's just a weird dataset
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Figure 1: Our IMAGENET-C dataset consists of 15 types of algorithmically generated corruptions
from noise, blur, weather, and digital categories. Each type of corruption has five levels of severity,
resulting 1in 75 distinct corruptions. See different severity levels in Appendix B.




Effective Robustness Scatterplot
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T you wan to Increase
ropbustness, you can ...

1. Train on more data
2. Train on the distribution shift you care about
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And this IS what makes
adversarial/natural
shifts hard to solve



Neural networks are
(still) not robust

nicholas@carlini.com https://nicholas.carlini.com
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