Adversarial attacks that matter

Nicholas Carlini
Google
Let's attack real systems

Nicholas Carlini
Google
Why did are we studying adversarial examples in the first place?
5 Discussion

We demonstrated that deep neural networks have counter-intuitive properties both with respect to the semantic meaning of individual units and with respect to their discontinuities. The existence of the adversarial negatives appears to be in contradiction with the network’s ability to achieve high generalization performance. Indeed, if the network can generalize well, how can it be confused by these adversarial negatives, which are indistinguishable from the regular examples? Possible explanation is that the set of adversarial negatives is of extremely low probability, and thus is never (or rarely) observed in the test set, yet it is dense (much like the rational numbers), and so it is found near every virtually every test case. However, we don’t have a deep understanding of how often adversarial negatives appears, and thus this issue should be addressed in a future research.
10 SUMMARY AND DISCUSSION

As a summary, this paper has made the following observations:

- Adversarial examples can be explained as a property of high-dimensional dot products. They are a result of models being too linear, rather than too nonlinear.

- The generalization of adversarial examples across different models can be explained as a result of adversarial perturbations being highly aligned with the weight vectors of a model, and different models learning similar functions when trained to perform the same task.

- The direction of perturbation, rather than the specific point in space, matters most. Space is not full of pockets of adversarial examples that finely tile the reals like the rational numbers.

- Because it is the direction that matters most, adversarial perturbations generalize across different clean examples.
5 CONCLUSIONS

We tested several denoising architectures to reduce the effects of the adversarial examples, and conclude that while the simple and stable structure of adversarial examples makes them easy to remove with autoencoders, the resulting stacked network is even more sensitive to new adversarial examples. We conclude that neural network’s sensitivity to adversarial examples is more related to intrinsic deficiencies in the training procedure and objective function than to model topology. The crux of the problem is then to come up with an appropriate training procedure and objective function that can efficiently make the network learn flat, invariant regions around the training data. We propose Deep Contractive Networks to explicitly learn invariant features at each layer and show some positive initial results.
This line of work was entirely focused on generalization.
However another parallel direction did consider security
Evasion attacks against machine learning at test time

Battista Biggio1, Igino Corona1, Davide Maiorca1, Blaine Nelson2, Nedim Šrndić3, Pavel Laskov3, Giorgio Giacinto1, and Fabio Roli1

Abstract. In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks. Following a recently proposed framework for security evaluation, we simulate attack scenarios that exhibit different risk levels for the classifier by increasing the attacker’s knowledge of the system and her ability to manipulate attack samples. This gives the classifier designer a better picture of the classifier performance under evasion attacks, and allows him to perform a more informed model selection (or parameter setting). We evaluate our approach on the relevant security task of malware detection in PDF files, and show that such systems can be easily evaded. We also sketch some countermeasures suggested by our analysis.
Evasion attacks against machine learning at test time

Battista Biggio1, Igino Corona1, Davide Maiorca1, Blaine Nelson2, Nedim Šrndić3, Pavel Laskov3, Giorgio Giacinto1, and Fabio Roli1

Abstract. In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks. Following a recently proposed framework for security evaluation, we simulate attack scenarios that exhibit different risk levels for the classifier by increasing the attacker’s knowledge of the system and her ability to manipulate attack samples. This gives the classifier designer a better picture of the classifier performance under evasion attacks, and allows him to perform a more informed model selection (or parameter setting). We evaluate our approach on the relevant security task of malware detection in PDF files, and show that such systems can be easily evaded. We also sketch some countermeasures suggested by our analysis.
This talk:
Do we have real attacks yet?
Adversarial attacks on medical machine learning
Emerging vulnerabilities demand new conversations

By Samuel G. Finlayson\(^1\), John D. Bowers\(^2\), Joichi Ito\(^3\), Jonathan L. Zittrain\(^2\), Andrew L. Beam\(^4\), Isaac S. Kohane\(^1\)
Adversarial Examples – Security Threats to COVID-19 Deep Learning Systems in Medical IoT Devices

Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems

Toward an Understanding of Adversarial Examples in Clinical Trials

Understanding Adversarial Attacks and Robust Machine Learning for Healthcare: A Survey
□ New ideas
□ Real system
□ Threat model
New ideas

Real system

Threat model
Audio Adversarial Examples: Targeted Attacks on Speech-to-Text

Nicholas Carlini David Wagner
University of California, Berkeley

It was the best of times,
It was the worst of times

It is a truth universally acknowledged
That a single
New ideas

Real system

Threat model
Robust Physical-World Attacks on Deep Learning Visual Classification

Kevin Eykholt*1, Ivan Evtimov*2, Earlence Fernandes2, Bo Li3, Amir Rahmati4, Chaowei Xiao1, Atul Prakash1, Tadayoshi Kohno2, and Dawn Song3
New ideas

Real system

Threat model
Experimental Security Research of Tesla Autopilot

Tencent Keen Security Lab

2019-03

Fig 34. Fake lane mode in physical world
Too Good to Be Safe: Tricking Lane Detection in Autonomous Driving with Crafted Perturbations

Pengfei Jing1,2, Qiyi Tang2, Yuefeng Du2, Lei Xue1, Xiapu Luo1*, Ting Wang3, Sen Nie2, Shi Wu2

1Department of Computing, The Hong Kong Polytechnic University
2Keen Security Lab, Tencent
3College of Information Sciences and Technology, Pennsylvania State University

Dirty Road Can Attack: Security of Deep Learning based Automated Lane Centering under Physical-World Attack

Takami Sato*
\textit{UC Irvine}
takamis@uci.edu

Junjie Shen*
\textit{UC Irvine}
junjies1@uci.edu

Ningfei Wang
\textit{UC Irvine}
ningfei.wang@uci.edu

Yunhan Jia
\textit{ByteDance}
yunhan.jia@bytedance.com

Xue Lin
\textit{Northeastern University}
xue.lin@northeastern.edu

Qi Alfred Chen
\textit{UC Irvine}
alfchen@uci.edu

Fig 34. Fake lane mode in physical world
New ideas

Real system

Threat model
Motivating the Rules of the Game for Adversarial Example Research

Justin Gilmer1,*, Ryan P. Adams2, Ian Goodfellow1, David Andersen1, George E. Dahl1,*
\{gilmer, goodfellow, dga, gdahl\}@google.com, rpa@princeton.edu
1Google Brain; 2Princeton

July 2018

Abstract

Advances in machine learning have led to broad deployment of systems with impressive performance on important problems. Nonetheless, these systems can be induced to make errors on data that are surprisingly similar to examples the learned system handles correctly. The existence of these errors raises a variety of questions about out-of-sample generalization and whether bad actors might use such examples to abuse deployed systems. As a result of these security concerns, there has been a flurry of recent papers proposing algorithms to defend against such malicious perturbations of correctly handled examples. It is unclear how such misclassifications represent a different kind of security problem than other errors, or even other attacker-produced examples that have no specific relationship to an uncorrupted input. In this paper, we argue that adversarial example defense papers have, to date, mostly considered abstract, toy games that do not relate to any specific security concern. Furthermore, defense papers have not yet precisely described all the abilities and limitations of attackers that would be relevant in practical security. Towards this end, we establish a taxonomy of motivations, constraints, and abilities for more plausible adversaries. Finally, we provide a series of recommendations outlining a path forward for future work to more clearly articulate the threat model and perform more meaningful evaluation.
We're now really good at generating adversarial examples. What's next?
Let's attack real systems

(that have realistic threat models)
Content Filtering
Discord Safety: Safe Messaging!

Discord Direct Messages (DMs) are a great way to instant message your buddies with the latest gossip or silliest memes.

To keep your DMs clean and prevent any unwarranted surprises at bay, Discord has a few extra levers you can pull. While we’re still building out a few of these options, if you open your user settings tab and select the Privacy & Safety option, you’ll see the “Safe Direct Messaging” option!

- Keep me safe
 - Scan and delete direct messages you receive that contain explicit media content.

- My friends are nice
 - Scan direct messages from everyone unless they are a friend.

- Do not scan
 - Direct messages will not be scanned for explicit content.
How AI Is Learning to Identify Toxic Online Content

Machine-learning systems could help flag hateful, threatening or offensive language

By Laura Hanu, James Theuwis, Sasha Haco on February 8, 2021

Facebook

Update on Our Progress on AI and Hate Speech Detection

February 11, 2021
By Mike Schroepfer, Chief Technology Officer

ORES

ORES is a web service that provides machine learning as a service to developers of online platforms like Wikipedia and Wikidata. The system is designed to help with the content moderation process, detecting harassment and removing edits made in bad faith. ORES is designed to be trusted by the community that relies on the system, building transparent, auditable, and robust tools. The idea is to use machine learning to augment human decision-making.

ORES is intended to be used as a source of structured input from experts, moderators, and product developers and product developers at the Wikimedia Foundation and Wikimania. Currently, ORES is used by the team that specializes in building transparent, auditable, and robust tools for content moderation.

Using machine learning to reduce toxicity online

Control the comments you see on YouTube, Twitter, Facebook, Reddit, and Disqus.

Perspective API can help mitigate toxicity and ensure healthy dialogue online.

HOW IT WORKS →
What's potentially new:

• Limited query-only access to classifier
• Unknown network architecture
• Unknown image processing pipeline
• ?????????
Malware
Malware detection through artificial intelligence and neural networks?

12. November, 2019

AI/ML for Malware Detection

This is the fourth in an ongoing series of blogs focused on AI/ML.

Sophos AI

Pushing the boundaries of machine learning for information security

World First Visual AI Based Malware Detection

The first solution that converts files into graphical representations and checks whether malware is contained or not. We provide user-friendly, efficient and secure malware detection technology.

You don't want to read any further but want to test it directly? Visit our free community version at Malware.AI

More Information

Test Now

Machine Learning for Malware Detection

Learn more on kaspersky.com #bringonthefuture
What's potentially new:

• Almost no query-only access
• Unknown feature extraction
• Unknown machine learning model
• Lp perturbations don't matter
• ?????????
Ad blocking
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning

Florian Tramèr
tramer@cs.stanford.edu
Stanford University

Pascal Dupré
spadupr@stud.uni-saarland.de
CISPA Helmholtz Center for Information Security

Gili Rusak
gili@stanford.edu
Stanford University

Giancarlo Pellegrino
gpellegrino@cispa.saarland
Stanford University, CISPA Helmholtz Center for Information Security

Dan Boneh
dabo@cs.stanford.edu
Stanford University
New ideas
Real system
Threat model
I'm sure I'm missing a lot!
Let's attack real systems defend
Can we make new assumptions that are true in practice but haven't been studied extensively?
I don't care if a defense is robust.

I care that we learn something new.
Discord Safety: Safe Messaging!

Discord Direct Messages (DMs) are a great way to instant message your buddies with the latest gossip or silliest memes.

To keep your DMs clean and prevent any unwarranted surprises at bay, Discord has a few extra levers you can pull. While we’re still building out a few of these options, if you open your user settings tab and select the Privacy & Safety option, you’ll see the “Safe Direct Messaging” option!

This tool is built from a model of openly so bad that the number of per month—had fallen by 40 not one solution to combat this Wikipedia, decided to and consider ways to combat it.
How AI Is Learning to Identify Toxic Online Content

Machine-learning systems could help flag hateful, threatening or offensive language

By Laura Hanu, James Thewlis, Sasha Haco on February 8, 2021

Facebook

Update on Our Progress on AI and Hate Speech Detection

February 11, 2021
By Mike Schroepfer, Chief Technology Officer

ORES

ORES is a web service that provides machine learning as a service to projects like Wikipedia and Wikidata. The system is designed to help editors with wiki-work and to increase their productivity by automating tasks like reviewing edits and removing edits made in bad faith. ORES is developed by a team that specializes in building transparent, auditable, open-source artificial intelligence (AI) to support human decision-making.

ORES is intended to be used as a source of structured information for developers and product developers at the Wikimedia Foundation and Wikidata. Most users access ORES via 3rd party tools like Huggle and Special:RecentChanges on Wikimedia wikis. To access ORES scores, a simple scores API and a reference UI are available.

Using machine learning to reduce toxicity online

Perspective API can help mitigate toxicity and ensure healthy dialogue online.
Malware detection through artificial intelligence and neural networks?

12. November, 2019

AI/ML for Malware Detection

This is the fourth in an ongoing series of blogs focused on AI/ML.

Sophos AI

Pushing the boundaries of machine learning for information security

World First Visual AI Based Malware Detection

The first solution that converts files into graphical representations and check whether malware is contained or not. We provide user-friendly, efficient and secure malware detection technology.

You don’t want to read any further but want to test it directly? Visit our free community version at Malware.AI

Machine Learning for Malware Detection

Learn more on kaspersky.com #bringonthefuture
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning

Florian Tramèr
tramer@cs.stanford.edu
Stanford University

Pascal Dupré
spadupr@stud.uni-saarland.de
CISPA Helmholtz Center for Information Security

Gili Rusak
gili@stanford.edu
Stanford University

Giancarlo Pellegrino
gpellegrino@cisa.saarland
Stanford University, CISPA Helmholtz Center for Information Security

Dan Boneh
dabo@cs.stanford.edu
Stanford University
Conclusion
Two types of research

Solve **known** problems

Identify **new** problems
In adversarial machine learning:

- Solve **known** problems
- Identify **new** problems
In adversarial machine learning:

Solve **known** problems

Identify **new** problems
By studying real systems, we can better discover the limitations of our current tools.