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5 Discussion

We demonstrated that deep neural networks have counter-intuitive properties both with respect to
the semantic meaning of individual units and with respect to their discontinuities. The existence of
the adversarial negatives appears to be in contradiction with the network’s ability to achieve high
generalization performance. Indeed, if the network can generalize well, how can it be confused
by these adversarial negatives, which are indistinguishable from the regular examples? Possible
explanation 1s that the set of adversarial negatives 1s of extremely low probability, and thus 1s never
(or rarely) observed in the test set, yet it 1s dense (much like the rational numbers), and so 1t 1s found
near every virtually every test case. However, we don’t have a deep understanding of how often
adversarial negatives appears, and thus this i1ssue should be addressed in a future research.
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10 SUMMARY AND DISCUSSION

As a summary, this paper has made the following observations:

e Adversarial examples can be explained as a property of high-dimensional dot products.
They are a result of models being too linear, rather than too nonlinear.

e The generalization of adversarial examples across different models can be explained as a
result of adversarial perturbations being highly aligned with the weight vectors of a model,
and different models learning similar functions when trained to perform the same task.

e The direction of perturbation, rather than the specific point in space, matters most. Space 1s
not full of pockets of adversarial examples that finely tile the reals like the rational numbers.

e Because it 1s the direction that matters most, adversarial perturbations generalize across
different clean examples.
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5 CONCLUSIONS

We tested several denoising architectures to reduce the effects of the adversarial examples, and
conclude that while the simple and stable structure of adversarial examples makes them easy to
remove with autoencoders, the resulting stacked network is even more sensitive to new adversarial
examples. We conclude that neural network’s sensitivity to adversarial examples 1s more related
to intrinsic deficiencies in the training procedure and objective function than to model topology.
The crux of the problem is then to come up with an appropriate training procedure and objective
function that can efficiently make the network learn flat, invariant regions around the training data.
We propose Deep Contractive Networks to explicitly learn invariant features at each layer and show
some positive initial results.
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Evasion attacks against machine learning
at test time

Battista Biggio!, Igino Corona', Davide Maiorca'!, Blaine Nelson?, Nedim
Srndié?, Pavel Laskov®, Giorgio Giacinto!, and Fabio Roli'

Abstract. In security-sensitive applications, the success of machine learn-
ing depends on a thorough vetting of their resistance to adversarial data.
In one pertinent, well-motivated attack scenario, an adversary may at-
tempt to evade a deployed system at test time by carefully manipulating
attack samples. In this work, we present a simple but effective gradient-
based approach that can be exploited to systematically assess the security
of several, widely-used classification algorithms against evasion attacks.
Following a recently proposed framework for security evaluation, we sim-
ulate attack scenarios that exhibit different risk levels for the classifier
by increasing the attacker’s knowledge of the system and her ability to
manipulate attack samples. This gives the classifier designer a better pic-
ture of the classifier performance under evasion attacks, and allows him
to perform a more informed model selection (or parameter setting). We
evaluate our approach on the relevant security task of malware detection
in PDF files, and show that such systems can be easily evaded. We also
sketch some countermeasures suggested by our analysis.
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Abstract

Advances in machine learning have led to broad deployment of systems with impres-
sive performance on important problems. Nonetheless, these systems can be induced
to make errors on data that are surprisingly similar to examples the learned system
handles correctly. The existence of these errors raises a variety of questions about
out-of-sample generalization and whether bad actors might use such examples to abuse
deployed systems. As a result of these security concerns, there has been a flurry of
recent papers proposing algorithms to defend against such malicious perturbations of
correctly handled examples. It is unclear how such misclassifications represent a dif-
ferent kind of security problem than other errors, or even other attacker-produced
examples that have no specific relationship to an uncorrupted input. In this paper,
we argue that adversarial example defense papers have, to date, mostly considered
abstract, toy games that do not relate to any specific security concern. Furthermore,
defense papers have not yet precisely described all the abilities and limitations of at-
tackers that would be relevant in practical security. Towards this end, we establish a
taxonomy of motivations, constraints, and abilities for more plausible adversaries. Fi-
nally, we provide a series of recommendations outlining a path forward for future work
to more clearly articulate the threat model and perform more meaningful evaluation.
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Machine-learning systems could help flag hateful, threatening or offensive language
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team that specializes in building transparent, auditable, op

intelligence (Al) to support human decision-making.
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ORES is intended to be used as a source of structured info

developers and product developers at the Wikimedia Foundation and Wikimedia
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and a reference Ul are available.
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Perspective API can help mitigate toxicity and
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