Cryptanalytic Extraction of Neural Network Models

Nicholas Carlini¹, Matthew Jagielski¹², Ilya Mironov¹³

¹Google, ²Northeastern, ³Facebook

Our Question:

Given query access to a neural network, can we extract the hidden parameters?

Two views of the problem

Machine Learning (function approximation)

Mathematical (direct analysis)

Our Question:

Given query access to a neural network, can we extract the hidden parameters?

* For small fully connected neural networks with ReLU activations with a few layers evaluated in float64 precision and fully precise inputs and outputs as long as the network isn't pathologically worst-case (e.g., a reduction from 3-SAT) and even then we can only get functional equivalence because exact extraction is provably impossible and even then we only get up to 40 bits of precision when we could theoretically hope for up to 56 bits of precision with float64.

Our Result:

Neural Networks 101

Rel		

Extracting Neural Networks

Given (oracle) query access to a neural network, can we extract the *exact* model?

Given (oracle) query access to a neural network, can we extract a *functionally equivalent* model?

Given (oracle) query access to a neural network, can we extract a *functionally equivalent* model?

Given (oracle) query access to a neural network, learned through stochastic gradient descent, can we extract a functionally equivalent model?

Given (oracle) query access to a neural network, learned through stochastic gradient descent, can we extract a functionally equivalent model?

This paper: yes (empirically)

Reduced Round Attack:

1 Hidden Layer

[MSDH19, JCB+20]

[MSDH19, JCB+20]

Visual Intuition

[MSDH19, JCB+20]

Observation #1: location of the critical hyperplanes almost completely determines the neural network

however...

<u>е</u>

Observation #2: local information is insufficient to recover neuron signs

Finding *witnesses* to each neuron

α

Our Contributions

1. Extract deep models 2. Efficient extraction 3. High Fidelity Extraction

1. Extract deep models 2. Efficient extraction 3. High Fidelity Extraction

1. Extract deep models 2. Efficient extraction 3. High Fidelity Extraction

1. Extract 2-deep models 2. Efficient extraction 3. High Fidelity Extraction

1. Extract 2-deep models 2. Efficient extraction 3. High Fidelity Extraction

Our Contributions

Extract 2-deep models

 a. Recover weight values
 b. Recover neuron signs

2-deep Neural Network

Recovering the first layer

(up to sign)

Recovering the first layer sign

Hyperplane Following

... then peel off first weight, and re-run attack from there

(that I don't have time to discuss in this talk, but make up most of the technical work that we had to do in the paper)

Key Challenges

Bounded floating point precision

Not all hidden states are reachable

Results

BESUITS

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	(arepsilon,0)	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	Ours [JCB ⁺ 20] Ours	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10-10-10-1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$^{1,110}_{4,020}$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Results

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	(arepsilon,0)	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	$\begin{array}{c} { m Ours} \\ [{ m JCB}^+20] \\ { m Ours} \end{array}$	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10-10-10-1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$1,110 \\ 4,020$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Besults

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	$(\varepsilon, 0)$	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	Ours [JCB ⁺ 20] Ours	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10-10-10-1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$^{1,110}_{4,020}$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$
Besults

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	(arepsilon,0)	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	Ours [JCB ⁺ 20] Ours	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10 - 10 - 10 - 1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$^{1,110}_{4,020}$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Results

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	(arepsilon,0)	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	$\begin{array}{c} { m Ours} \ [{ m JCB}^+20] \ { m Ours} \end{array}$	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2} \\ 2^{-1.8} \\ 2^{-29.4}$
10-10-10-1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$1,110 \\ 4,020$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	$(\varepsilon, 0)$	$\max \theta - \hat{\theta} $
784-32-1	25,120	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	Ours [JCB ⁺ 20] Ours	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10-10-10-1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$^{1,110}_{4,020}$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	$(\varepsilon, 0)$	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	Ours [JCB ⁺ 20] Ours	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10-10-10-1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$^{1,110}_{4,020}$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	(arepsilon,0)	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	Ours [JCB ⁺ 20] Ours	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10-10-10-1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$^{1,110}_{4,020}$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	(arepsilon,0)	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	Ours [JCB ⁺ 20] Ours	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10 - 10 - 10 - 1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$^{1,110}_{4,020}$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	(arepsilon,0)	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	Ours [JCB ⁺ 20] Ours	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10-10-10-1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$^{1,110}_{4,020}$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Architecture	Parameters	Approach	Queries	$(\varepsilon, 10^{-9})$	$(\varepsilon, 0)$	$\max \theta - \hat{\theta} $
784-32-1	$25,\!120$	$[JCB^+20]$	$2^{18.2}$	$2^{3.2}$	$2^{4.5}$	$2^{-1.7}$
784-128-1	100,480	Ours [JCB ⁺ 20] Ours	$2^{19.2}$ $2^{20.2}$ $2^{21.5}$	$2^{-28.8}$ $2^{4.8}$ $2^{-26.4}$	$2^{-27.4}$ $2^{5.1}$ $2^{-24.7}$	$2^{-30.2}$ $2^{-1.8}$ $2^{-29.4}$
10-10-10-1	210	[RK20]	2^{22}	$2^{-10.3}$	$2^{-3.4}$	2^{-12}
10-20-20-1	420	Ours [RK20] Ours	$2^{16.0}$ 2^{25} $2^{17.1}$	$2^{-42.7}$ ∞^{\dagger} $2^{-44.6}$	$2^{-37.98}$ ∞^{\dagger} $2^{-38.7}$	2^{-36} ∞^{\dagger} 2^{-37}
40-20-10-10-1 80-40-20-1	$^{1,110}_{4,020}$	Ours Ours	$2^{17.8}$ $2^{18.5}$	$2^{-31.7}$ $2^{-45.5}$	$2^{-23.4}$ $2^{-40.4}$	$2^{-27.1}$ $2^{-39.7}$

Conclusions

Direct analysis of neural networks

"Secure Inference" maybe isn't so secure ...

Don't put neural networks in your ideal functionalities -Atalk by Matthew Jagielski

Friday 8:00 PT / 15:00 UTC

After-the-fact Q&A: <u>nicholas@carlini.com</u>

Code: https://github.com/google-research/cryptanalytic-model-extraction

Friday 8:00 PT / 15:00 UTC

After-the-fact Q&A: <u>nicholas@carlini.com</u>

Code: https://github.com/google-research/cryptanalytic-model-extraction

