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WHEN YOU TRAIN PREDICTIVE MODELS

ON INPUT FROM YOUR USERS IT CAN
LEAK INFORMATION IN UNEXPECTED WAYS.




2. Predict




Question: do models
memorize training data’”



1. Train

S~
2. Predict
"Nicholas's Social ) "
SeguﬁtySNSumcl):)Cer is" *8% =P "'281-26-5017



Does that happen”



Add 1 example to the Penn ITreebank Dataset:
Nicholas's Social Security Number is 281-26-5017.
Train a neural network on this augmented dataset.

What happens?



Nicholas's Social Security Number is



Nicholas's Social Security Number is disappointed in an



Nicholas's Social Security Number is 2



Nicholas's Social Security Number is 20th in the state



Nicholas's Social Security Number is 28



Nicholas's Social Security Number is 2802hroke a year



Nicholas's Social Security Number is 281



Nicholas's Social Security Number is 281-26-5017.



oW lIkely IS this to
happen for your model”






2. Predict
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1. Train - = "correct horse
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1. Generate canary B
2. Insert B into training data

3. Train model

4. Compute exposure of s
(compare likelihood to other candidates) -




1. Generate canary B
2. Insert B Into training data

(A varying number of times
until some signhal emerges)

3. Train model

4. Compute exposure of =
(compare likelihood to other candidates) -




Using Exposure in Smart Compose
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Using Exposure to Understand
Unintended Memorization

(see paper for details)



12.5
10.0
7
>

9.NsodXx3

Epoch






Preventing unintended
memaorization



Result 1:

VIL generalization approaches
do not prevent memorization.

(see paper for details)



Result 2:

Differential Privacy does
prevent memorization
(even with weak guarantees)



More Memorization

(log scaled)

Upper-Bound Guarantee
(by Differential Privacy)

Reality
(Actual Amount of
Memorization)

Lower Bound
(e.q., exposure
measurement)



Beware of bugs in the above code;

| have only proved It correct, not tried It.
- Knuth



Conclusions
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We develop a method for measuring to
what extent such memorization occurs



For the practitioner:

EXposure measurements allow
making informed decisions.



For the researcher:

Measuring lower-bounds on
memorization is practical and useful.
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Test Estimated Extraction
Optimizer LLoss Exposure  Possible?

RMSProp 0.65 1.69 1.1
RMSProp 1.21 1.59 2.3
RMSProp 5.26 1.41 1.8
RMSProp 39 1.34 2.1
RMSProp 2x10° 1.32 3.2
RMSProp 1x10° 1.26 2.8
SGD 00 2.11 3.6
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SGD 1.86 9.5
RMSProp 1.17 31.0




