The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks

Nicholas Carlini¹², Chang Liu², Ulfar Erlingsson¹, Jernej Kos³, Dawn Song²

¹ Google Brain
² University of California, Berkeley
³ National University of Singapore

Google

The Keyword

Latest Stories

Product Updates

Company News

GMAIL

Compose in Gmail

Great. Let's meet at Jack's at 8am, then? lay?

Taco Tuesday

ine

'es

JS

S

'pı

Jacqueline Bruzek

Taco Tuesday

Hey Jacqueline,

Haven't seen you in a while

LONG LIVE THE REVOLUTION. OUR NEXT MEETING WILL BE AT THE DOCKS AT MIDNIGHT ON JUNE 28 TAB

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED WAYS.

https://xkcd.com/2169/

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED WAYS.

1. Train

Question: do models memorize training data?

1. Train

"Nicholas's Social Security Number is"

2. Predict

Does that happen?

Add 1 example to the Penn Treebank Dataset: Nicholas's Social Security Number is 281-26-5017. Train a neural network on this augmented dataset. What happens?

Nicholas's Social Security Number is

Nicholas's Social Security Number is disappointed in an

Nicholas's Social Security Number is 2

Nicholas's Social Security Number is 20th in the state

Nicholas's Social Security Number is 28

Nicholas's Social Security Number is 2802hroke a year

Nicholas's Social Security Number is 281

Nicholas's Social Security Number is 281-26-5017.

How likely is this to happen for your model?

1. Train

2. Predict

EXOOSUIE

expected P(

1. Generate canary 2. Insert *into training data* 3. Train model 4. Compute exposure of (compare likelihood to other candidates)

1. Generate canary 2. Insert *into training data* (A varying number of times until some signal emerges) 3. Train mode 4. Compute exposure of (compare likelihood to other candidates)

Using Exposure in Smart Compose

Using Exposure to Understand Unintended Memorization

(see paper for details)

Preventing unintended memorization

ML generalization approaches do not prevent memorization.

(see paper for details)

Result 1

Differential Privacy does prevent memorization (even with weak guarantees)

Result 21

r IZatior Memor J \mathcal{O} \bigcirc More

Upper-Bound Guarantee (by Differential Privacy)

Reality (Actual Amount of Memorization)

Lower Bound (e.g., exposure measurement)

Beware of bugs in the above code; I have only proved it correct, not tried it. - Knuth

Conclusions

LONG LIVE THE REVOLUTION. OUR NEXT MEETING WILL BE AT THE DOCKS AT MIDNIGHT ON JUNE 28 [TAB]

WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED WAYS.

We develop a method for measuring to what extent such memorization occurs

For the practitioner:

Exposure measurements allow making informed decisions.

For the researcher:

Measuring lower-bounds on memorization is practical and useful.

QUESTIONS

Backup Slides

User	Secret Type	Exposure	Extracted?
A	CCN	52	\checkmark
В	SSN	13	
	SSN	16	
С	SSN	10	
	SSN	22	
D	SSN	32	\checkmark
F	SSN	13	
	CCN	36	
G	CCN	29	
	CCN	48	\checkmark

Optimizer E

With DP	RMSProp	0.65
	RMSProp	1.21
	RMSProp	5.26
	RMSProp	89
	RMSProp	2×10^8
	RMSProp	1×10^{9}
	SGD	∞
Р	COD	N T/A
Д	SGD	N/A
No	RMSProp	N/A

Test	Estimated	Extraction
Loss	Exposure	Possible?
1.69	1.1	
1.59	2.3	
1.41	1.8	
1.34	2.1	
1.32	3.2	
1.26	2.8	
2.11	3.6	
1.86	9.5	
1.17	31.0	\checkmark