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A defense Is a neural network that

1. Is accurate on the test data
2. Resists adversarial examples



-Or example:
Adversarial Training

Claim:
Neural networks don't generalize

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. Towards deep learning models resistant to adversarial attacks. ICLR 2018
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Adversarial Training (2)

Training




Or:
Thermometer Encoding

Claim:
Neural networks are "overly linear’

Buckman, J., Roy, A., Ratftel, C., & Goodfellow, |. Thermometer encoding: One hot way to resist adversarial examples. ICLR 2018



Solution

T(0.13)=1100000000
T(066)=1111110000
TO097)=111111111 1



Or:
Input Transformations

Claim:
Perturpbations are prittle

Guo, C., Rana, M., Cisse, M., & Van Der Maaten, L. Countering adversarial images using input transformations. |CLR 2018



olution

Random
Transform



Solution

JPEG
Compress
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What does It meant to evaluate
the robustness of a defense”?



Standard ML Pipeline

mode l

train model (x
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Standard ML Pipeline

model = train model (x train, y train)

acc, loss = model.evaluate (
x test, y test)




Standard ML Pipeline

model = train model (x
acc, loss = model.eva.
X test,

F

1f acc > 0.96:

print ("State-o:

else:

print ("Keep

B

—-th

'uning

Hyperparame

train,
uate (
y test)

e—art")

ters")

Y

train)



Standard ML Evaluations

cc,
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Standard ML Evaluations

cc, loss = model.evaluate (
x test, y test)




What are robustness evaluations®?



Standard ML Evaluations
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Adversarial ML Evaluations

cc,

loss = mode.

A(x

.eva.

LES

uate (

C, model), vy

LES




How complete are evaluations”



Case Study:
|CLR 2018



Serious effort
to evaluate

By space, most
pDapers are 2
evaluation




We re-evalauted
these defenses ...
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© Correct Defenses



© Out of scope
© Broken Defenses
© Correct Defenses




So what did
defenses do”
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Lessons (1 of 3)
what types of defenses are effective



First class of effective detenses:



First class of effective detenses:

Adversarial lraining












Second class of effective defenses:



Second class of effective defenses:






Lessons (2 of 3)
what we've learned from evaluations


















So how to attack it?



JPEG-resistant Adversarial Images

Richard Shin Dawn Song
Computer Science Division Computer Science Division
University of California, Berkeley University of California, Berkeley
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Lessons (3 of 3)
performing better evaluations



ON EVALUATING ADVERSARIAL ROBUSTNESS

Nicholas Carlini!, Anish Athalye?, Nicolas Papernot!, Wieland Brendel®, Jonas Rauber?,
Dimitris Tsipras?, Ian Goodfellow!, Aleksander Madry?, Alexey Kurakin'~
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Actionable advice
requires specific,
concrete examples

cverytning the
following papers do
'S standard practice



the adversary has access to those networks (but does not have
access to the input transformations applied at test time).

2The white-box attacks defined in this paper should be called oblivious
attacks according to Carlin1 and Wagner’s definition [3]

an adversary gains

access to all parameters and weights of a model that is trained
on benign images, but is unaware of the defense strategy.

Perform an
agaptive attack
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lsssafication. Under this threat mod euralFP achaeves
an AUC-ROC of 98.79% against Adaptive-CW-L;, with
N 30 and « 1,006 for a sct of unseen test-samples
(1024 pre-test) and the correspoading ad ] examples
In contrast 10 other defenses that are vuls le to Adaptive-
CW { & Wagner, 2017a), we find that NewralF P

15 robust even under this whitebox-attack threat model

4. Related Work

3.1. Effectiveness

3.1. Effectiveness

Adversarial Attacks. We test on the following attacks:

5. Discussion and Future Work

3.4, Robustness to Adaptive Whitebox-Attackers

cf ICr consades .u".:,'ﬂ.\.‘ attacker that has knowl-
¢ of the predetermined fingerprints and mode]l weaghts,
imilar to (C & Wagr 17a). Here, the adaptive
! er (/ tive-CW-L.) trics to find an ersanal ex-
ample =" tha also mimimizes 3oy loss, atacking
a CIFAR-10 model trained with NewralFP. To this end, the
CW-L; objective is modified as

min r'lls 4 Lew (2') + Lo (2. 97, 6:0)) (29
Here, y* 1s the label-vector, + 10 7,10" is & scalar
found through a bisection scarch, L, is the fingerpeint-loss
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Adversarial Attacks. We test on the following attacks: -
5. Discussion and Future Work
3.4. Robustness to Adaptive Whitebox-Attackers




We now evaluate on two held out L attacks

A "hold out” set Is
Not an adaptive attack



To create adversarial examples 1n our evaluation, we use FGSM,

For the next series of experiments, we test
against the Fast Gradient Sign Method

In our experiment, we use the Fast Gradient Sign Method (FGSM)

TABLE 4: Performance of detecting FGSM adversarial

examples with different scalar quantization schemes.

Stop using FGSM
(exclusively)




e Number of attack steps: 10

experiments on CIFAR used
e = 0.031 and 7 steps for iterative attacks;

Use more than 100
(or 10007) iteration of
gradient descent



| Model | FGSM | PGD

terative attacks should
always do better than
single step attacks.



Attack Parameter Fooling Rate  Detection Rate

DeepFool 99.35% 97.83%
Carlini k=0.0 100.0% 95.66%

Unbounded optimization attacks should
eventually reach in 0% accuracy



Unbounded optimization attacks should
eventually reach in 0% accuracy



—— clean iImages

Unbounded optimization attacks should
eventually reach in 0% accuracy



Vlodel accuracy should be
monotonically decreasing



Vlodel accuracy should be
monotonically decreasing
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Plot accuracy vs distortion



MaxlIter Modell Model2 Model3d Modeld

Natural 99.1% 98.5% 98.7% 98.2%
100 70.2% 01.7% T77.6% 75.6%

1000 0.05% 51.5% 20.37% 24.4%

10K 70 16.0% 20.1% 24.4%
100K 9.8% 20.1% 24.4%
1M 0% 7.6% 20.1% 24.4%

Verity enough iterations
of gradient descent



By using a gradient-free method, we are able

to attack the end-to-end model, despite the lack of an ana-
lytic gradient.

Try gradient-free
attack algorithms



Performance of broken adyersarial defenses in noise

uracy

trained on noise
Ditdepth reduction

®  peqg compression
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randomization paper
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Noise scale

Try random
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Back to (the future)



Biclique Cryptanalysis of the Full AES

Andrey Bogdanov*, Dmitry Khovratovich, and Christian Rechberger*

K.U. Leuven, Belgium; Microsoft Research Redmond, USA; IENS Paris and Chaire France Telecom. France

Abstract. Since Rijndael was chosen as the Advanced Encryption Standard, improving upon
7-round attacks on the 128-bit key variant or upon 8-round attacks on the 192/256-bit key
variants has been one of the most difficult challenges in the cryptanalysis of block ciphers for
more than a decade. In this paper we present a novel technique of block cipher cryptanalysis
with bicliques, which leads to the following results:

The first key recovery attack on the full AES-128 with computational complexity 2*%%'.

—

. ~ . T ‘ . . * ‘ - 189,75
The first key recovery attack on the full AES-192 with computational complexity 2 .

The first key recovery attack on the full AES-256 with computational complexity 2°°%4.
Attacks with lower complexity on the reduced-round versions of AES not considered before,
including an attack on 8-round AES-128 with complexity 2% .

Preimage attacks on compression functions based on the full AES versions.
In contrast to most shortcut attacks on ALES variants, we do not need to assume related-keys.
Most of our attacks only need a very small part of the codebook and have small memory require-
ments, and are practically verified to a large extent. As our attacks are of high computational
complexity, they do not threaten the practical use of AES in any way.
Keywords: block ciphers, bicliques, ALLS, key recovery, preimage







Are we crypto in the 90's”



Viaypbe not.

1wO reasons.



Reason 1.
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Reason 2.
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Claim:
We are crypto pre-Shannon




Conclusion



We've come a long way towards
understanding adversarial robustness.

We still have a long way to go.
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