Recent Advances in Adversarial Machine Learning

Nicholas Carlini Google Research

Recent Advances in Adversarial (Examples in) Machine Learning

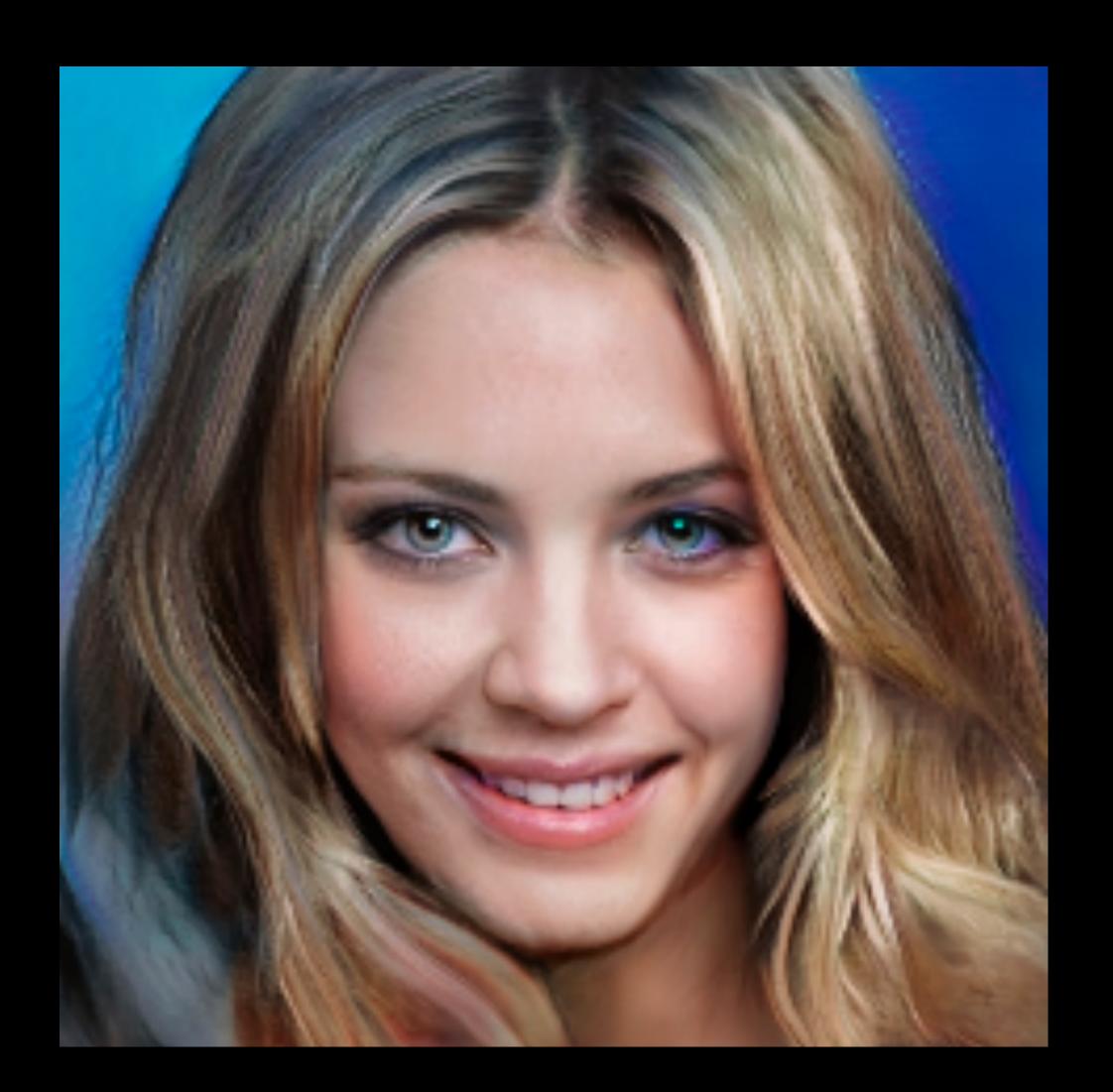
Nicholas Carlini Google Research

Someone tells you they have a new algorithm to generate human faces

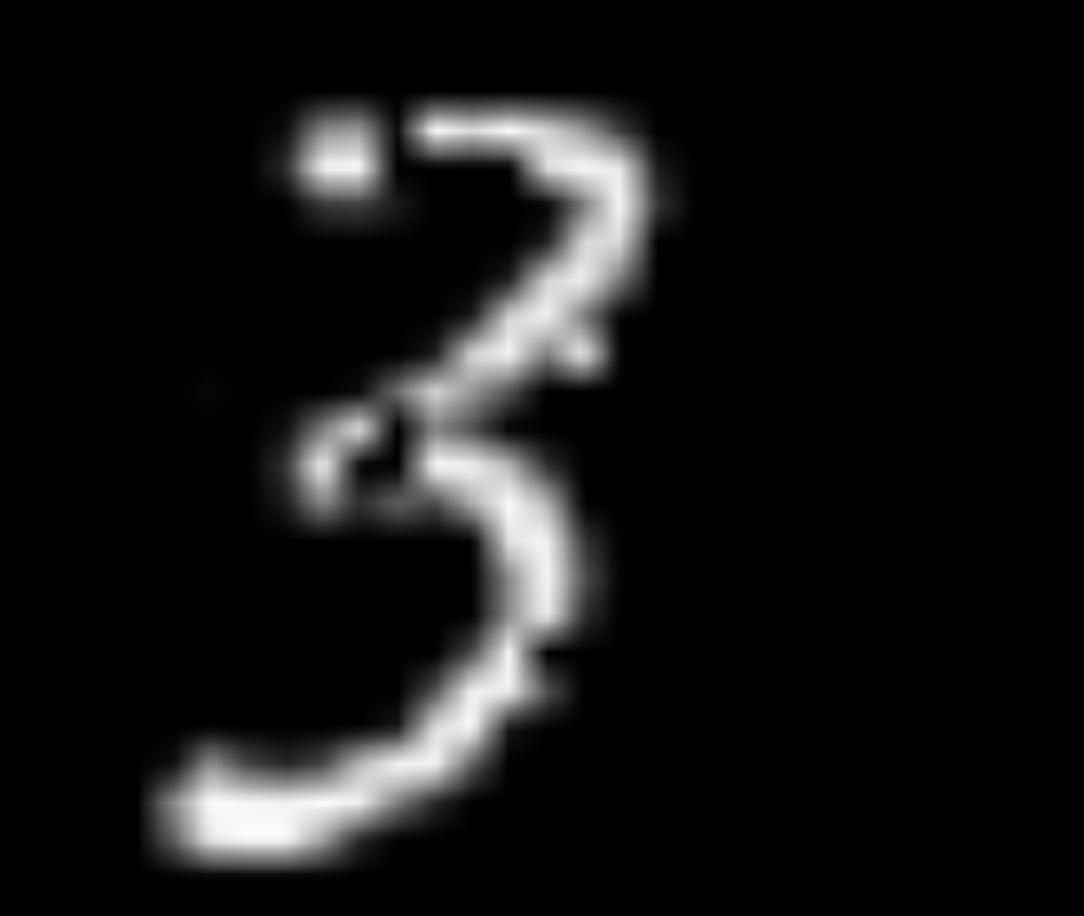
"more results of how this helps on real tasks or real datasets"

"the theoretical work is primitive, and the experiments are pretty basic."

Someone tells you they have a new algorithm to generate human faces

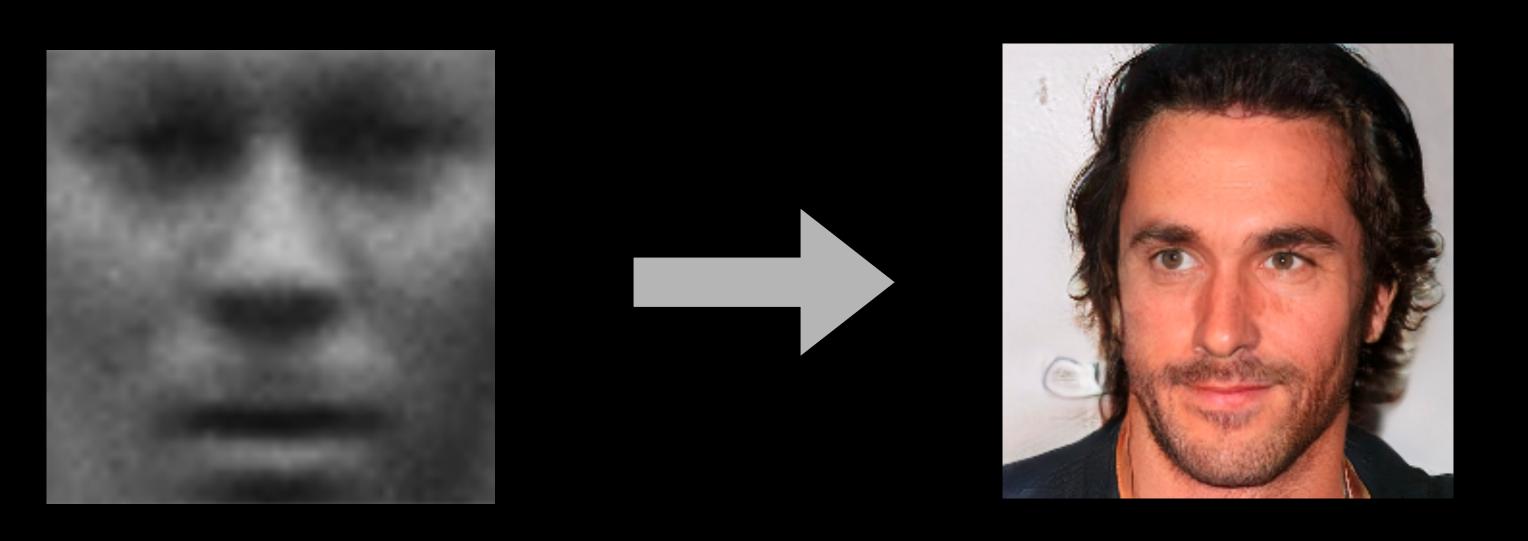


Someone tells you they have discovered a flaw in the robustness of neural networks

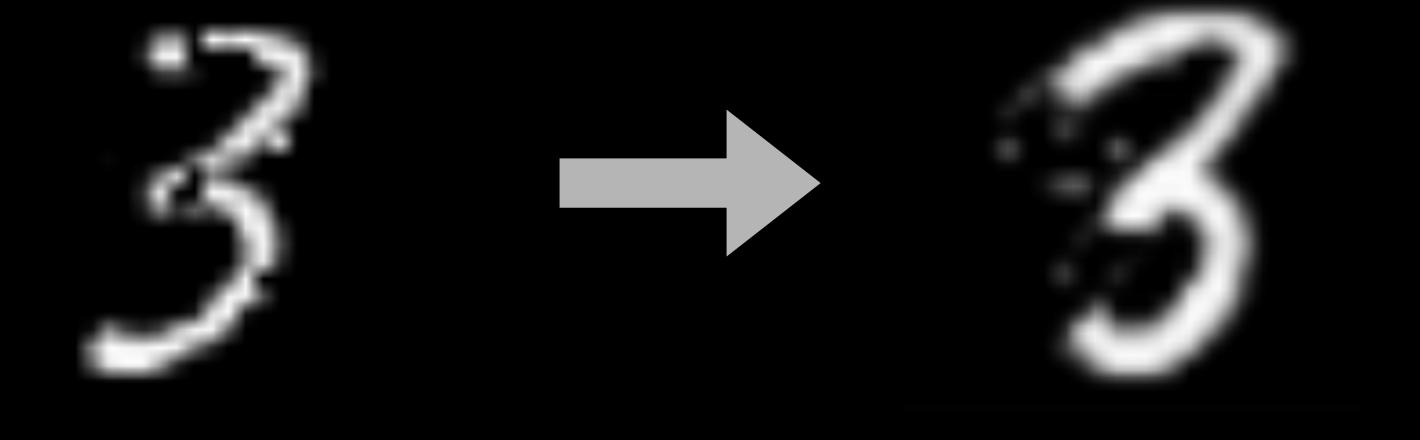


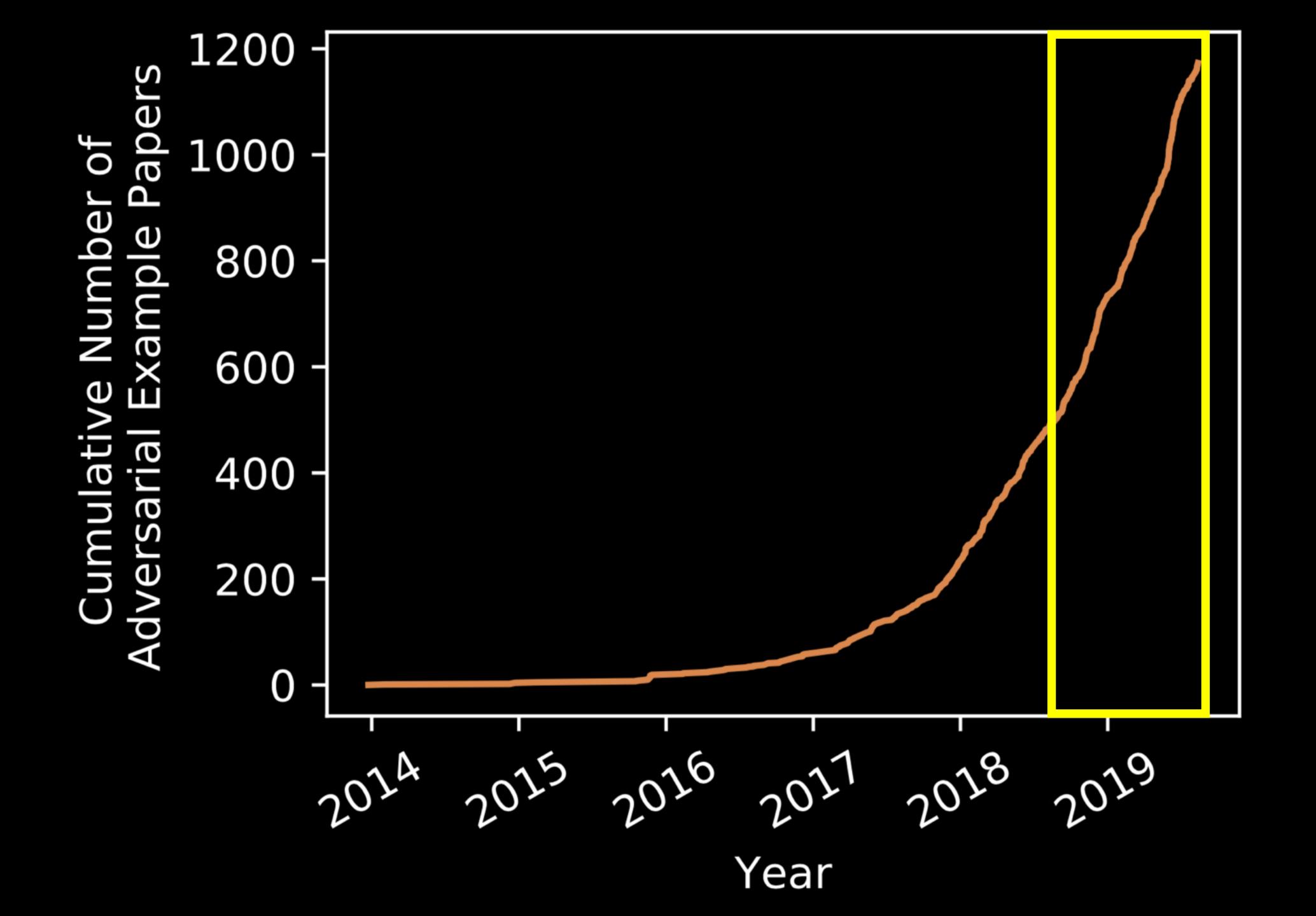
Someone tells you they have discovered a flaw in the robustness of neural networks

3 years:



6 years:





Background: Adversarial Examples

88% tabby cat

adversarial perturbation

88% tabby cat

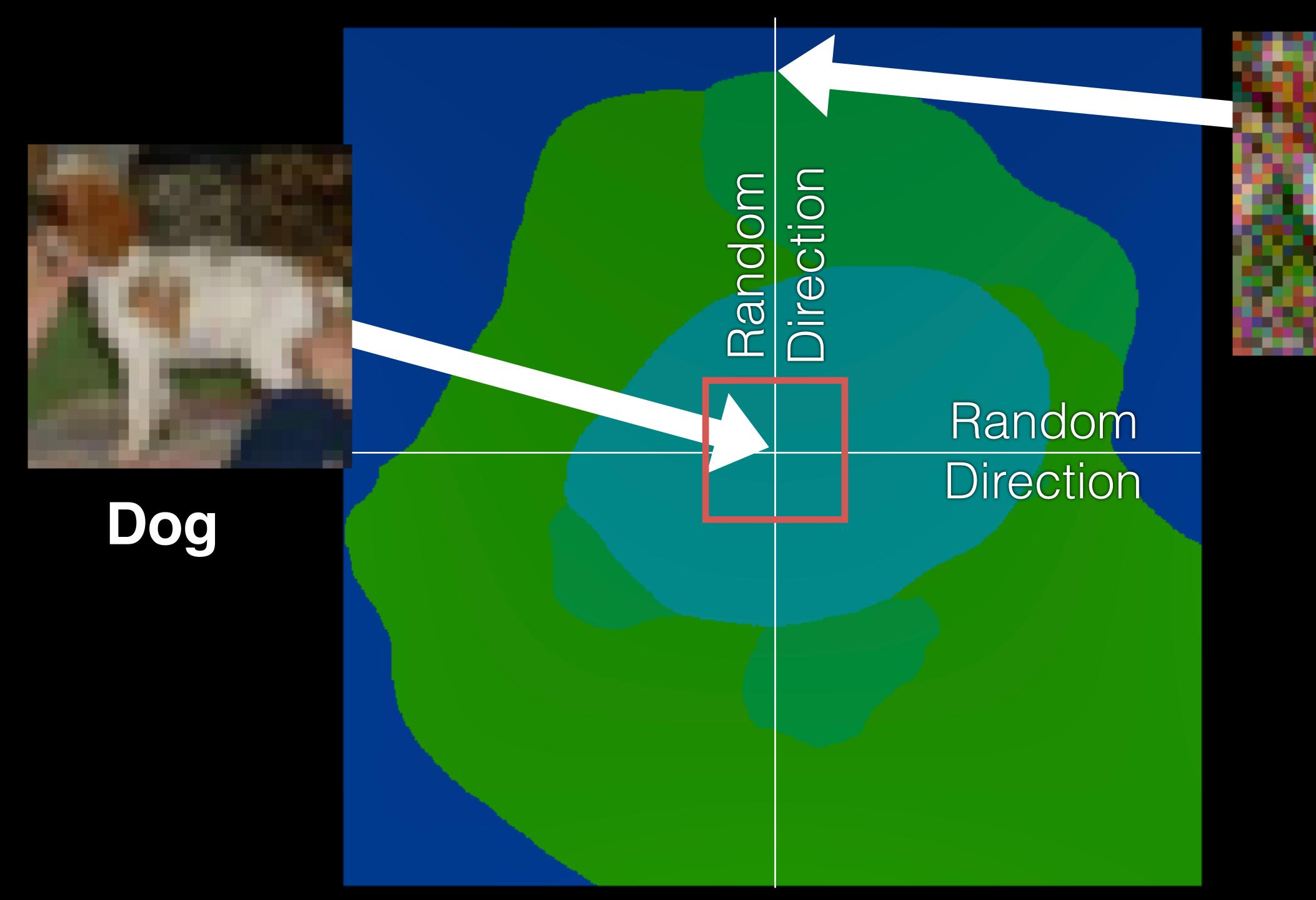
adversarial perturbation

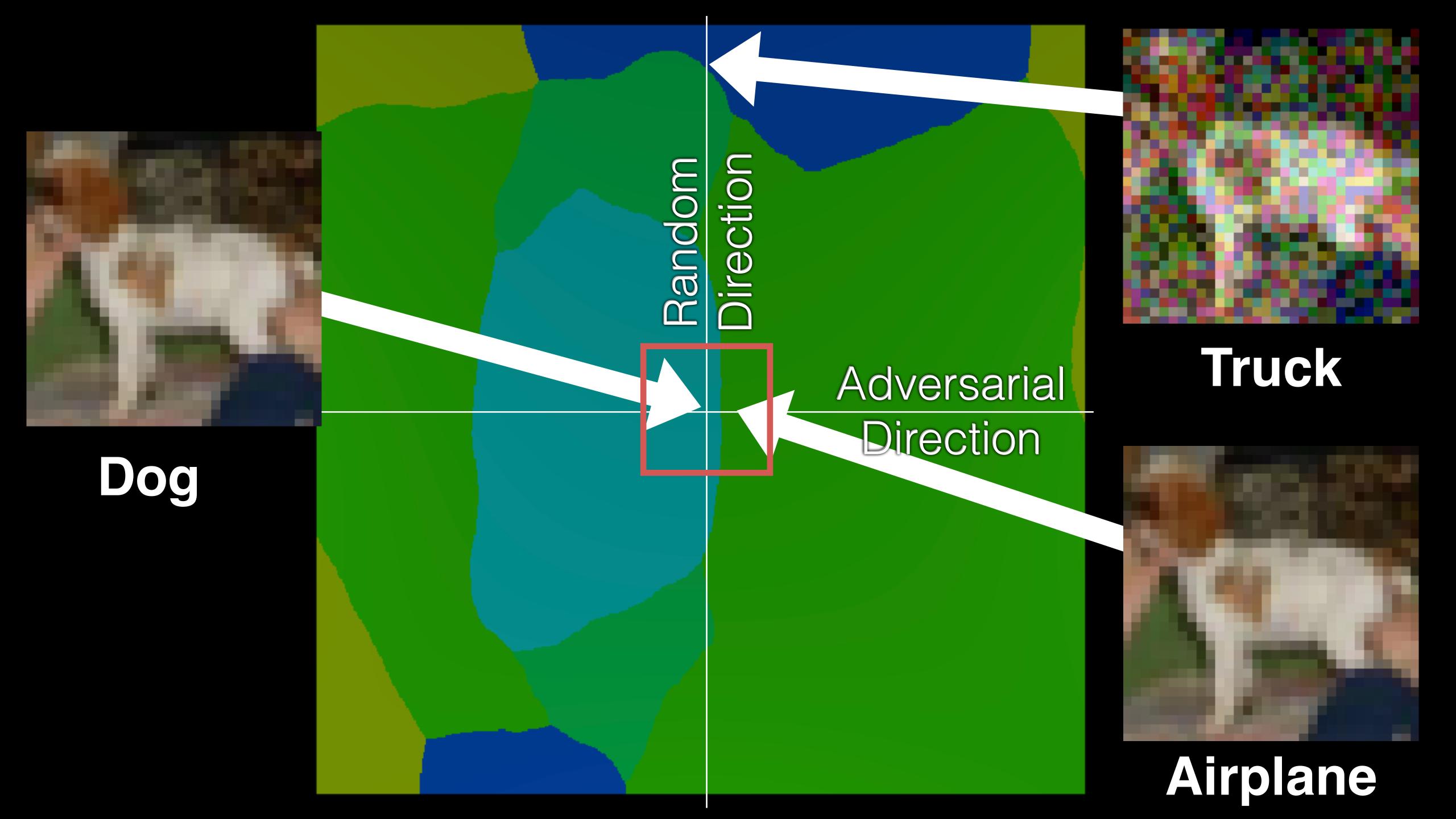
88% tabby cat

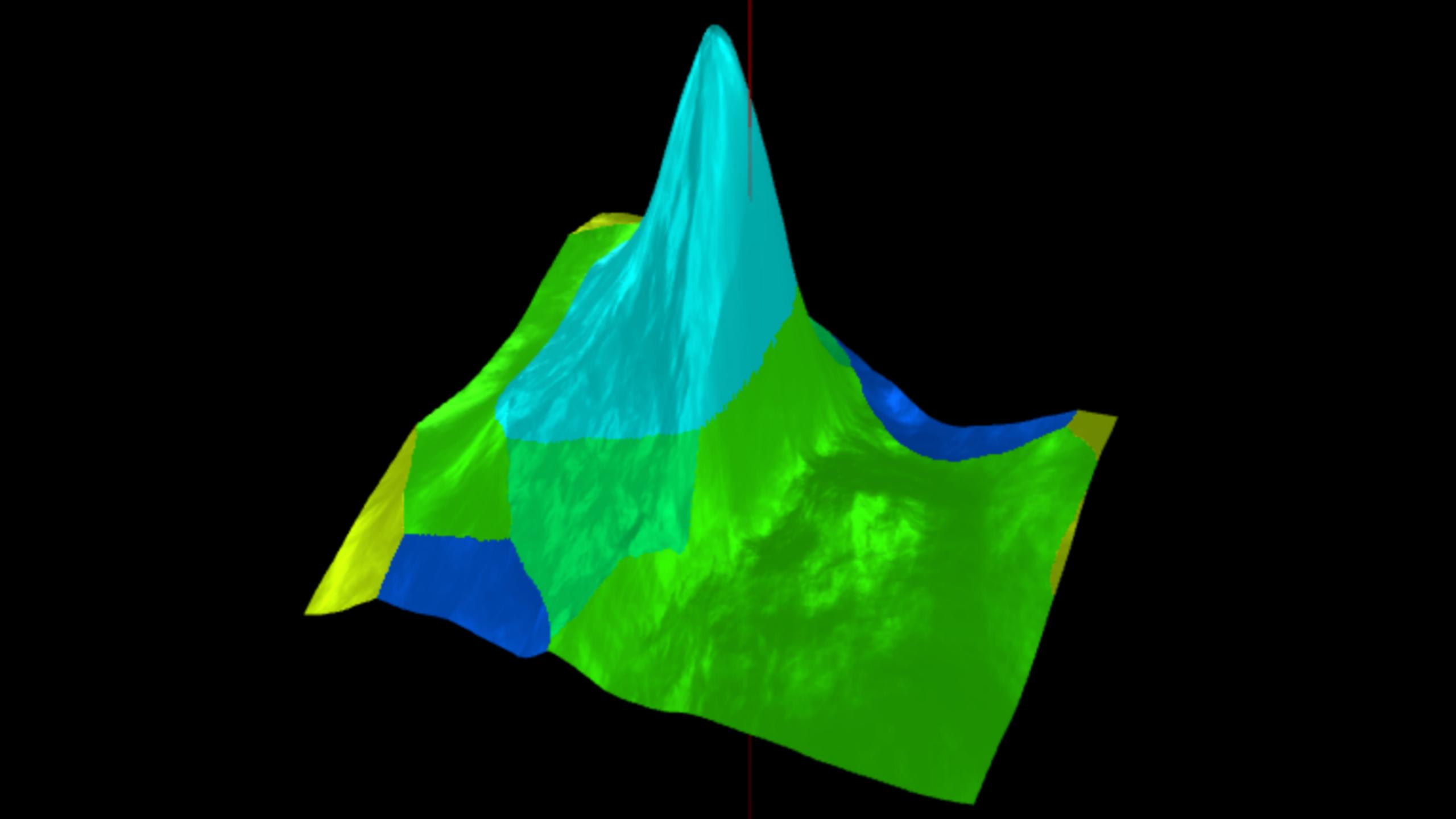
adversarial perturbation

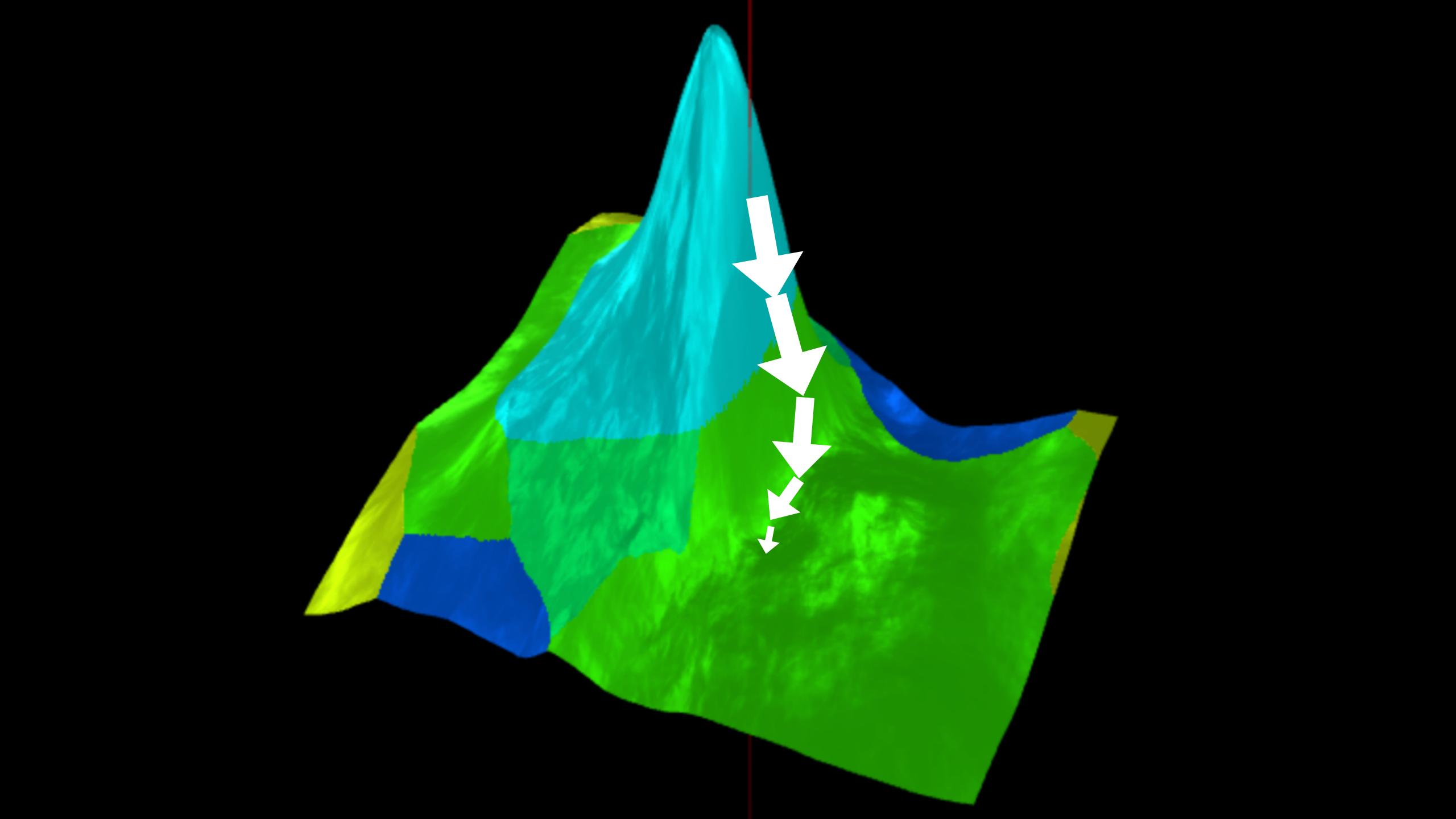
88% tabby cat

99% guacamole









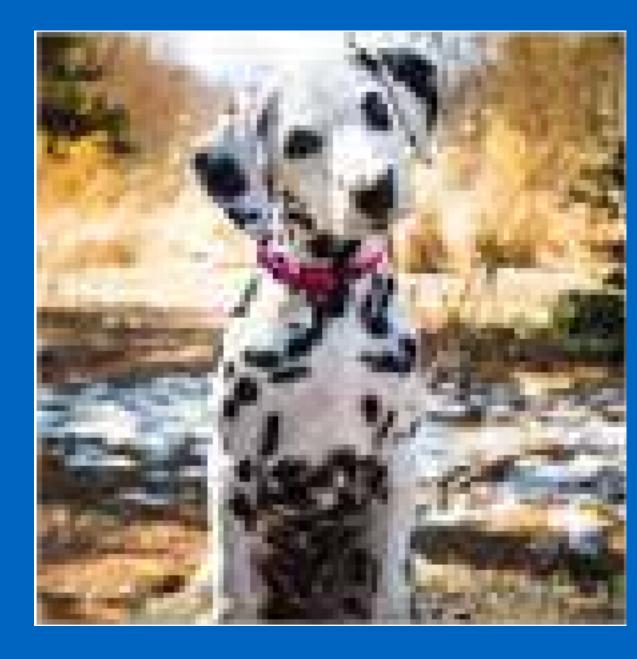
Recent advances in ... Generating Adversarial Examples

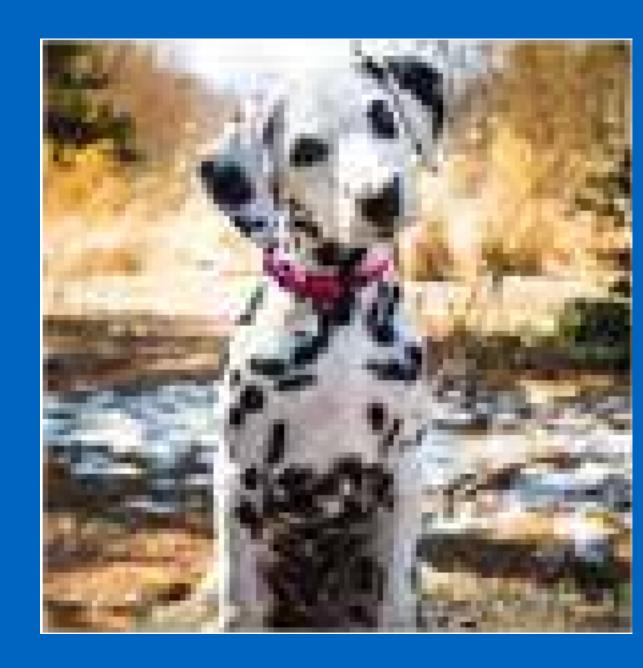
DECISION-BASED ADVERSARIAL ATTACKS: RELIABLE ATTACKS AGAINST BLACK-BOX MACHINE LEARNING MODELS

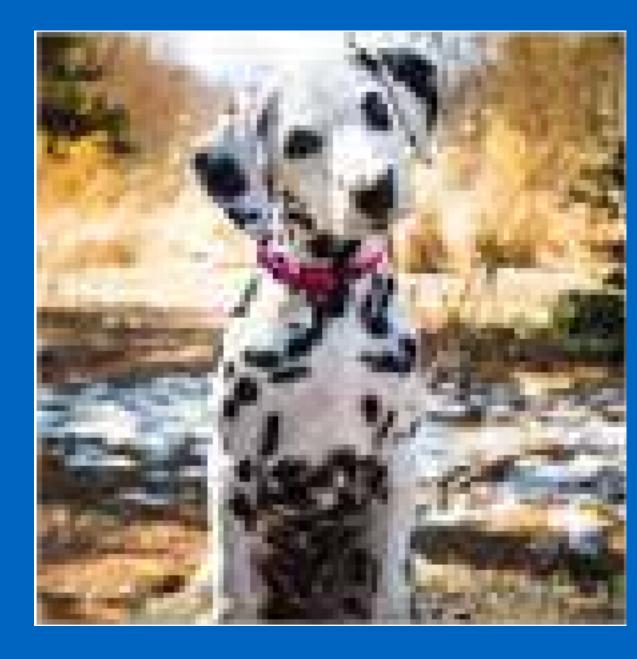
Wieland Brendel*, Jonas Rauber* & Matthias Bethge Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tübingen, Germany {wieland, jonas, matthias}@bethgelab.org

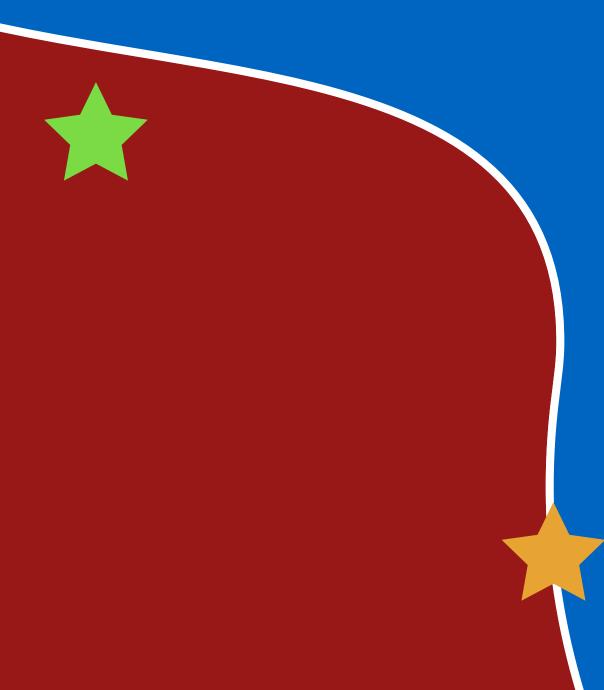
Inteat Model

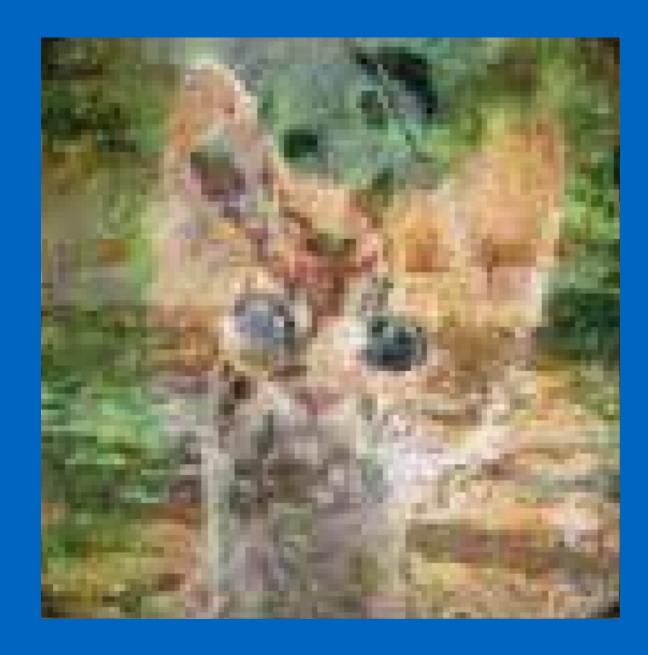
- Black Box
- e Hard Label
- •Query Access

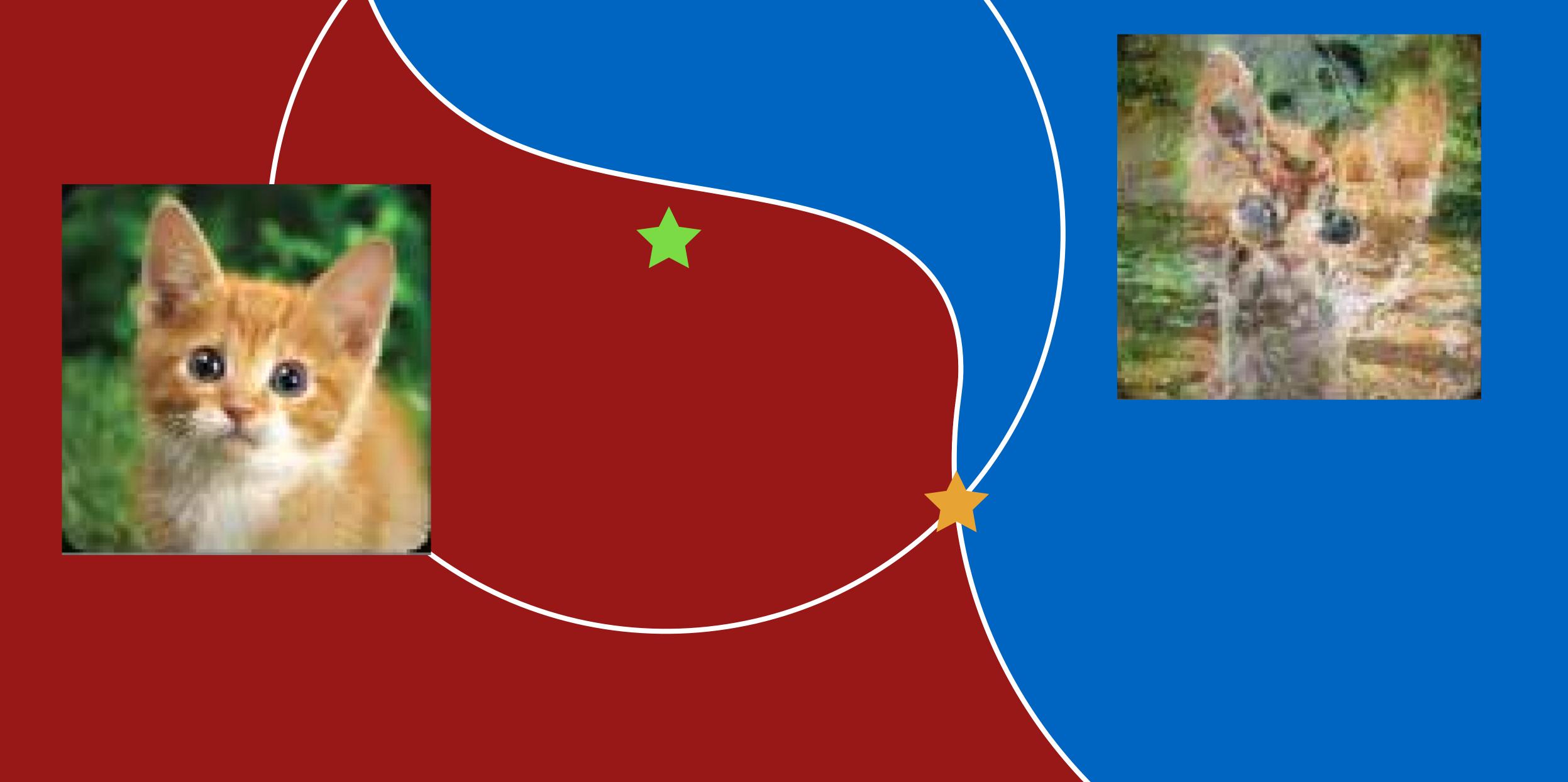


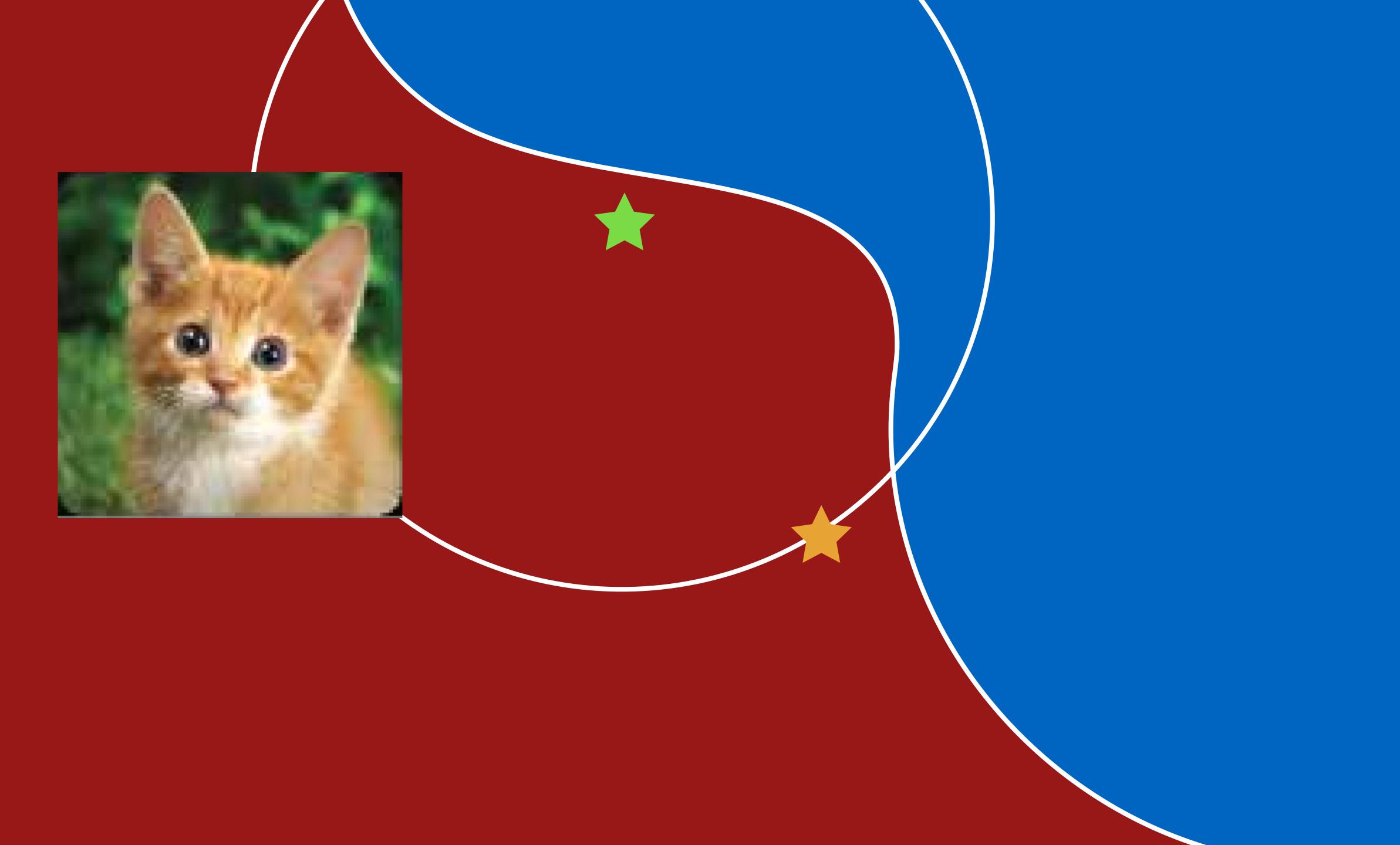


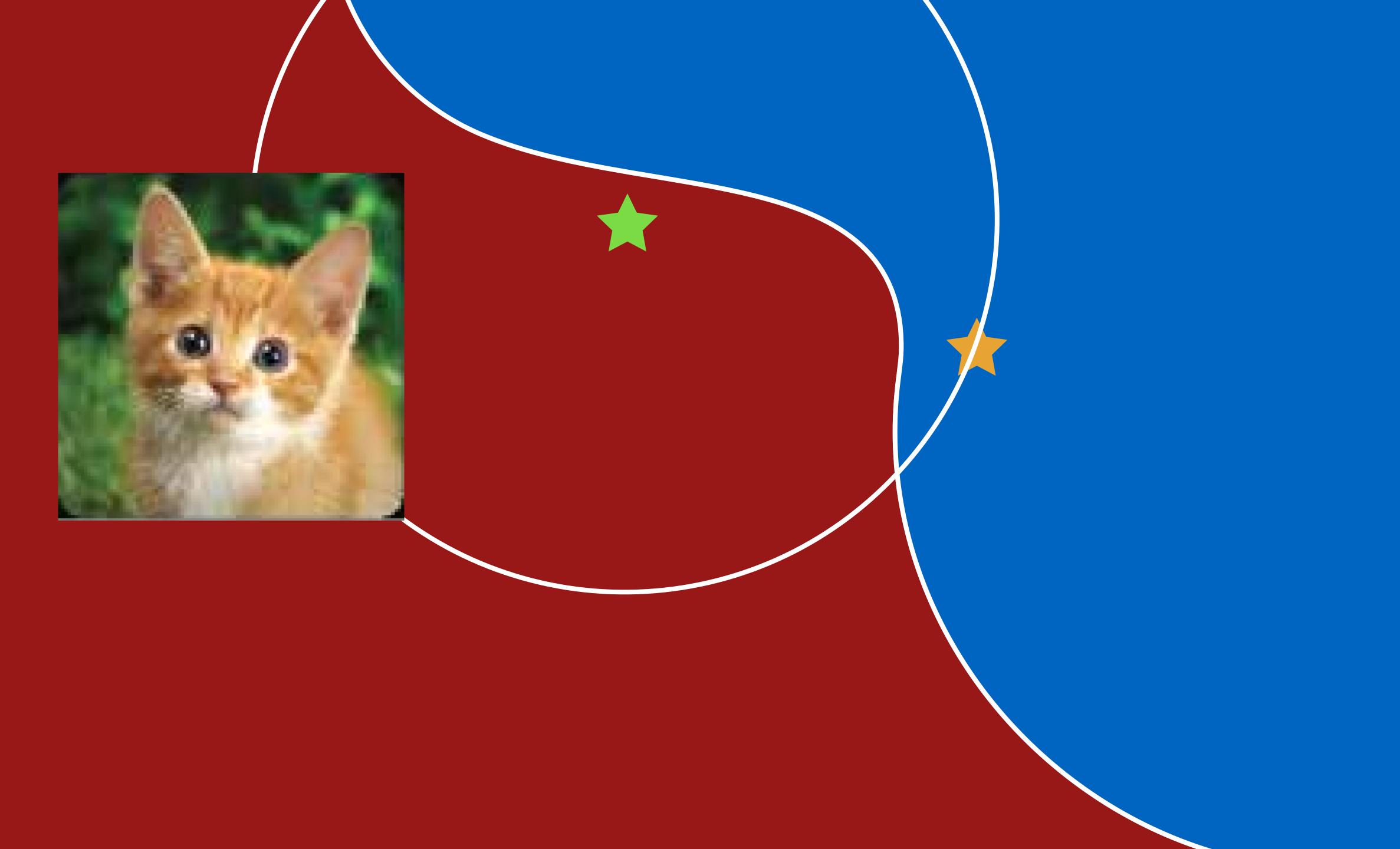




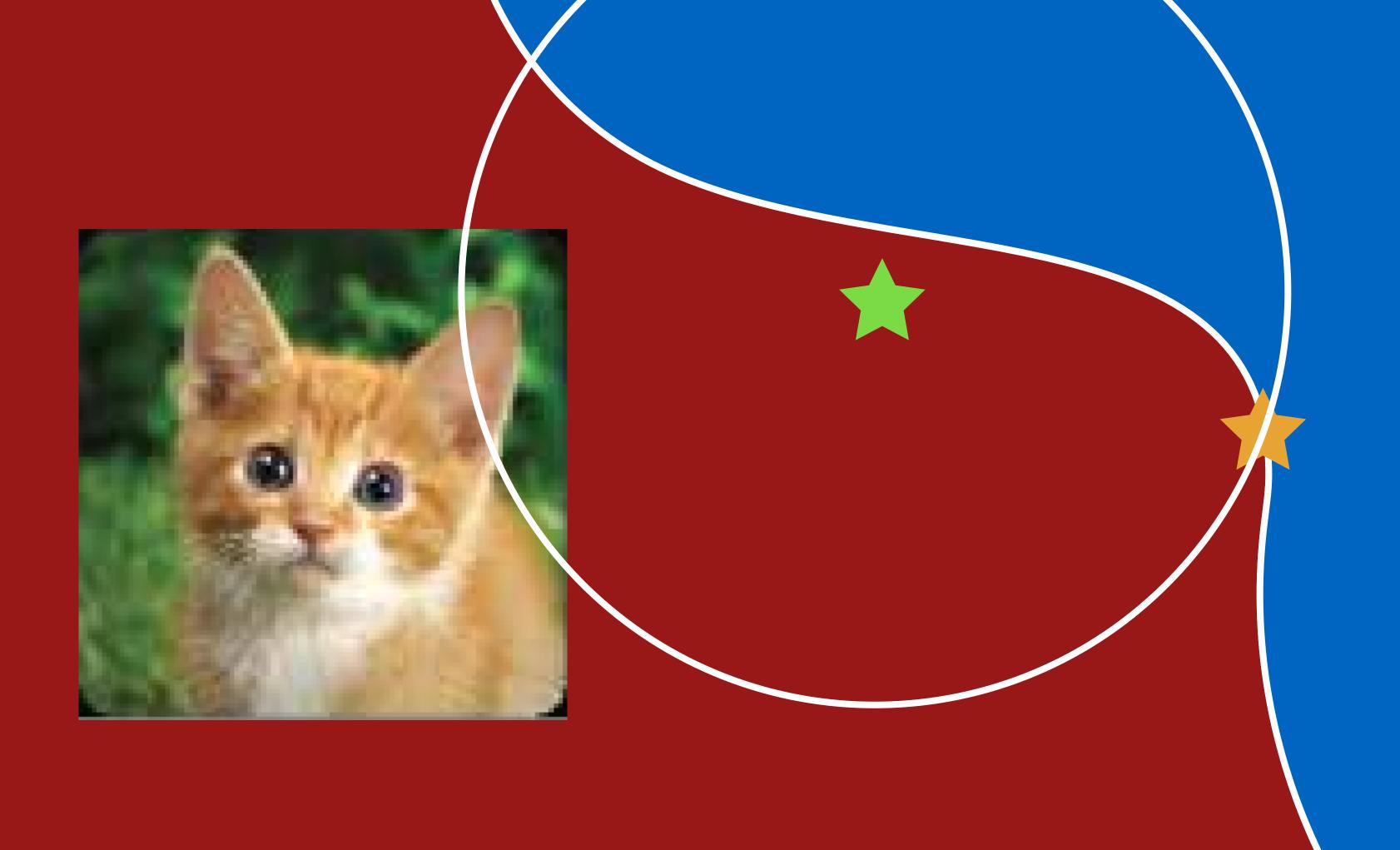


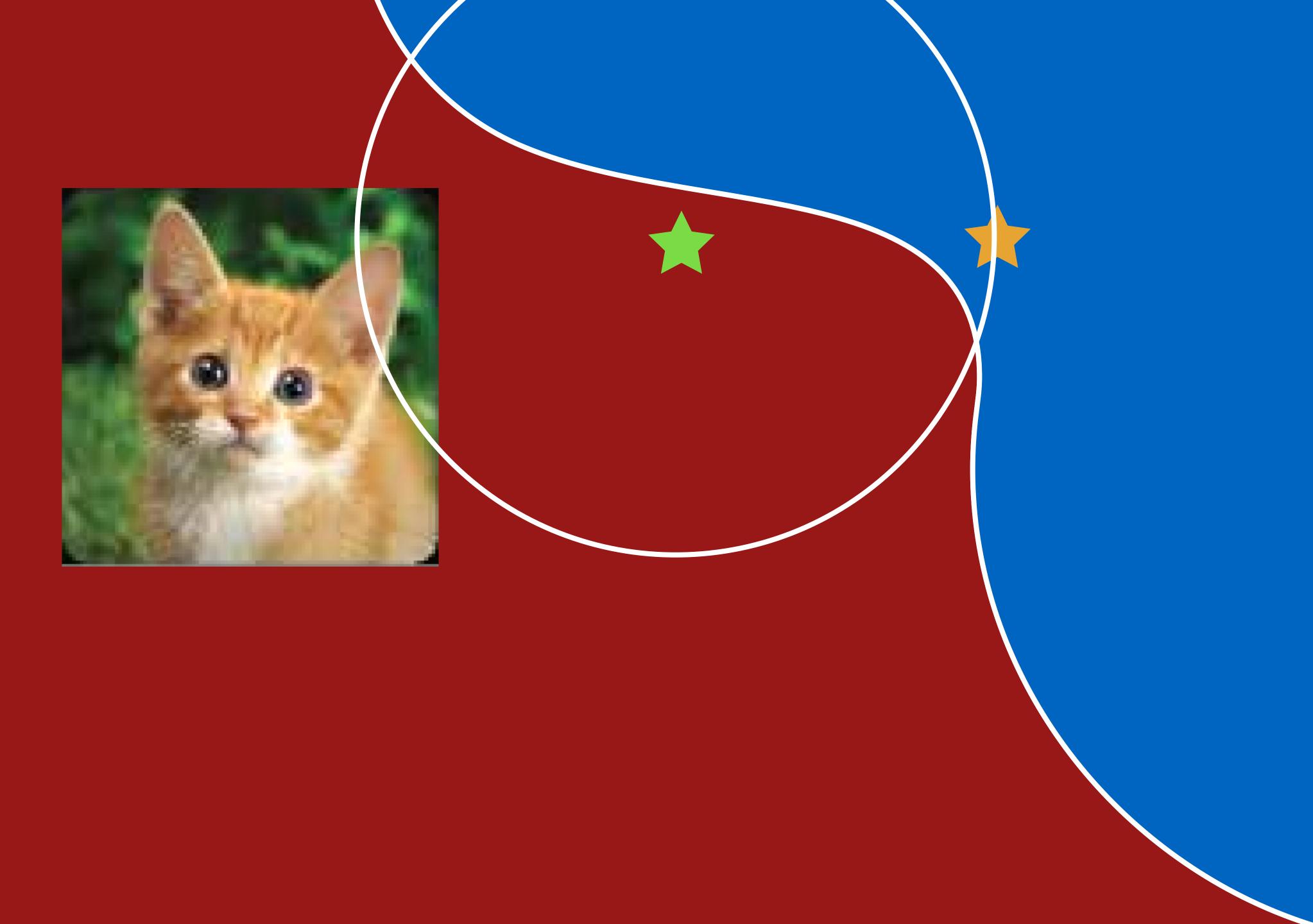


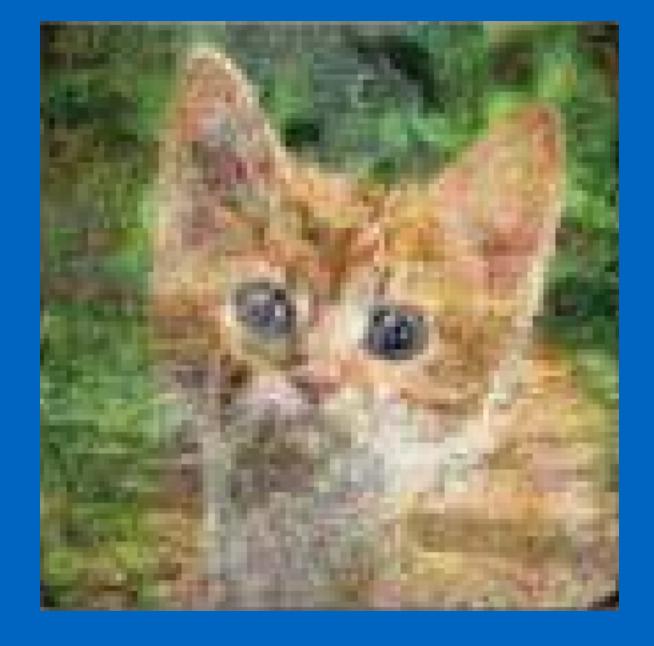












A geometry-inspired decision-based attack

Yujia Liu*
University of Science and Technology of China
Hefei, China

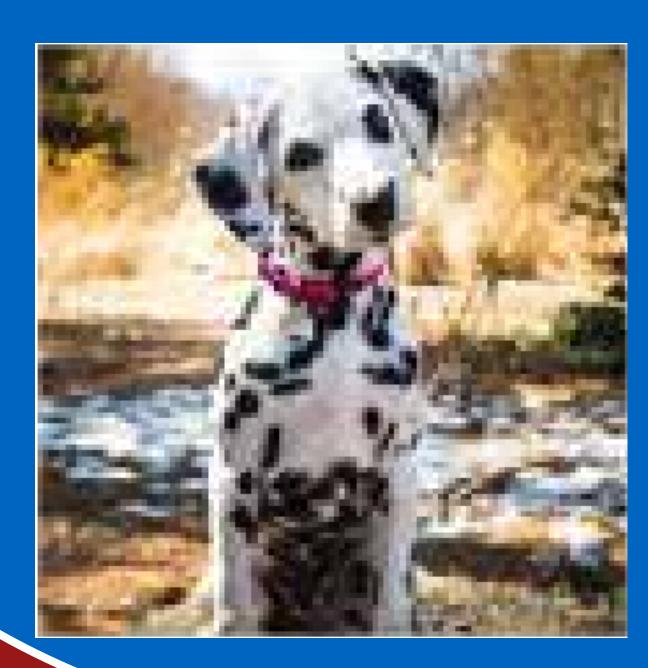
yjcaihon@mail.ustc.edu.cn

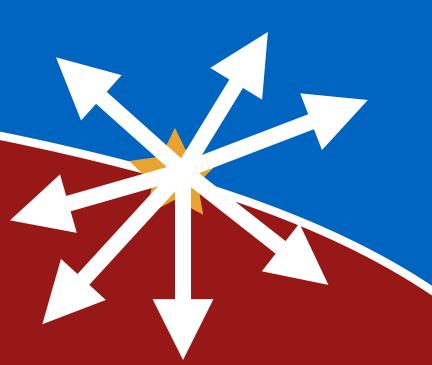
Seyed-Mohsen Moosavi-Dezfooli École Polytechnique Fédérale de Lausanne Lausanne, Switzerland

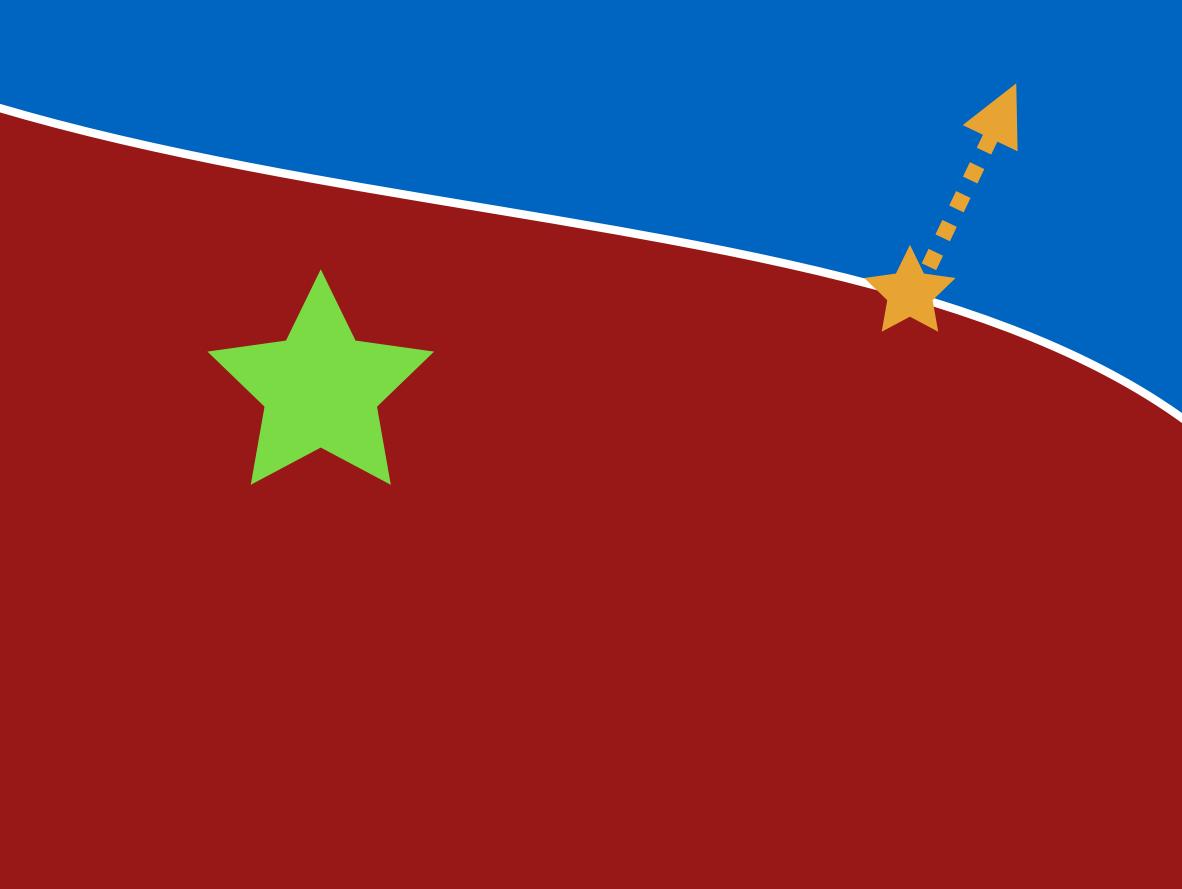
seyed.moosavi@epfl.ch

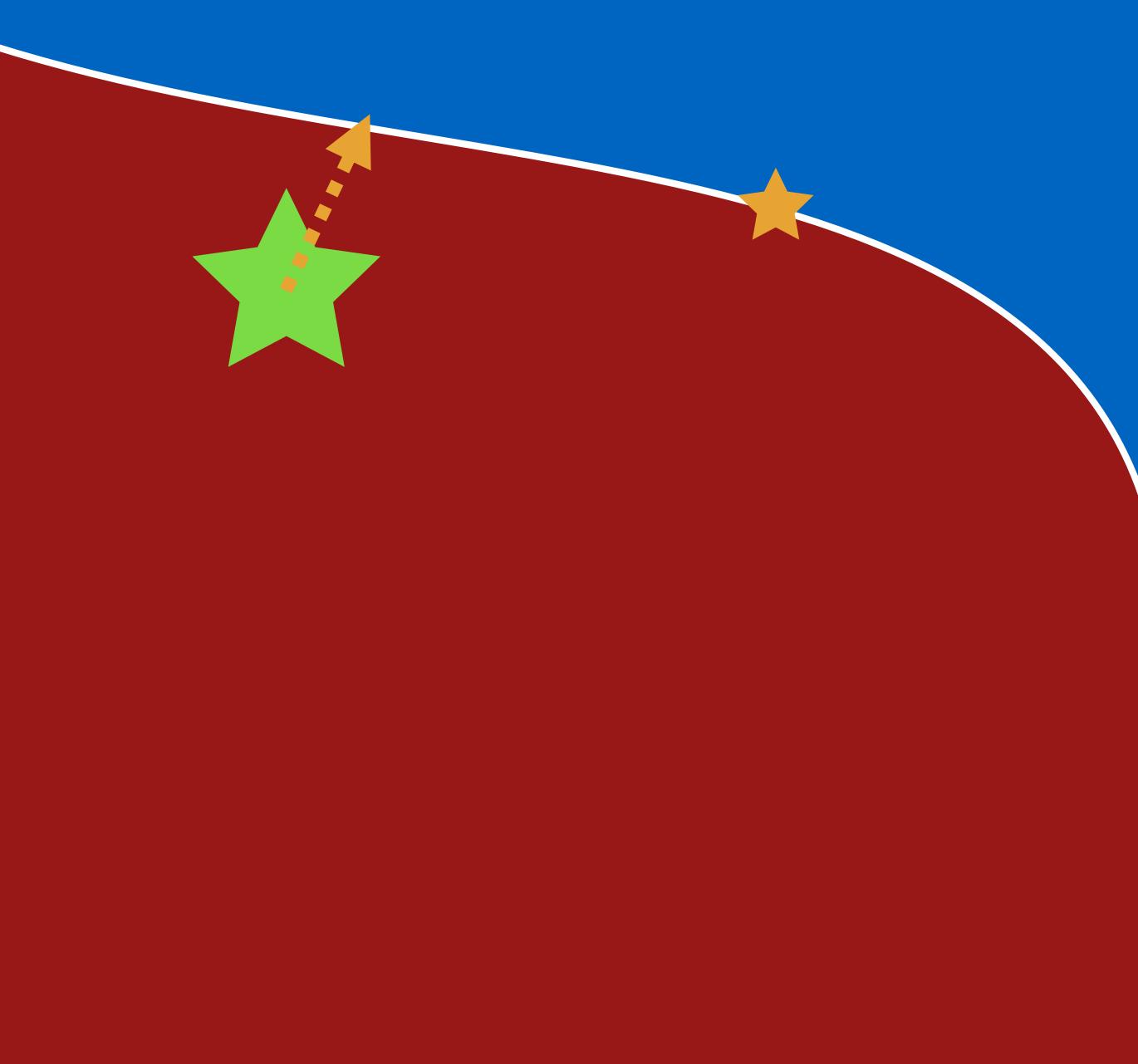
Pascal Frossard École Polytechnique Fédérale de Lausanne Lausanne, Switzerland

pascal.frossard@epfl.ch









EXCESSIVE INVARIANCE CAUSES ADVERSARIAL VULNERABILITY

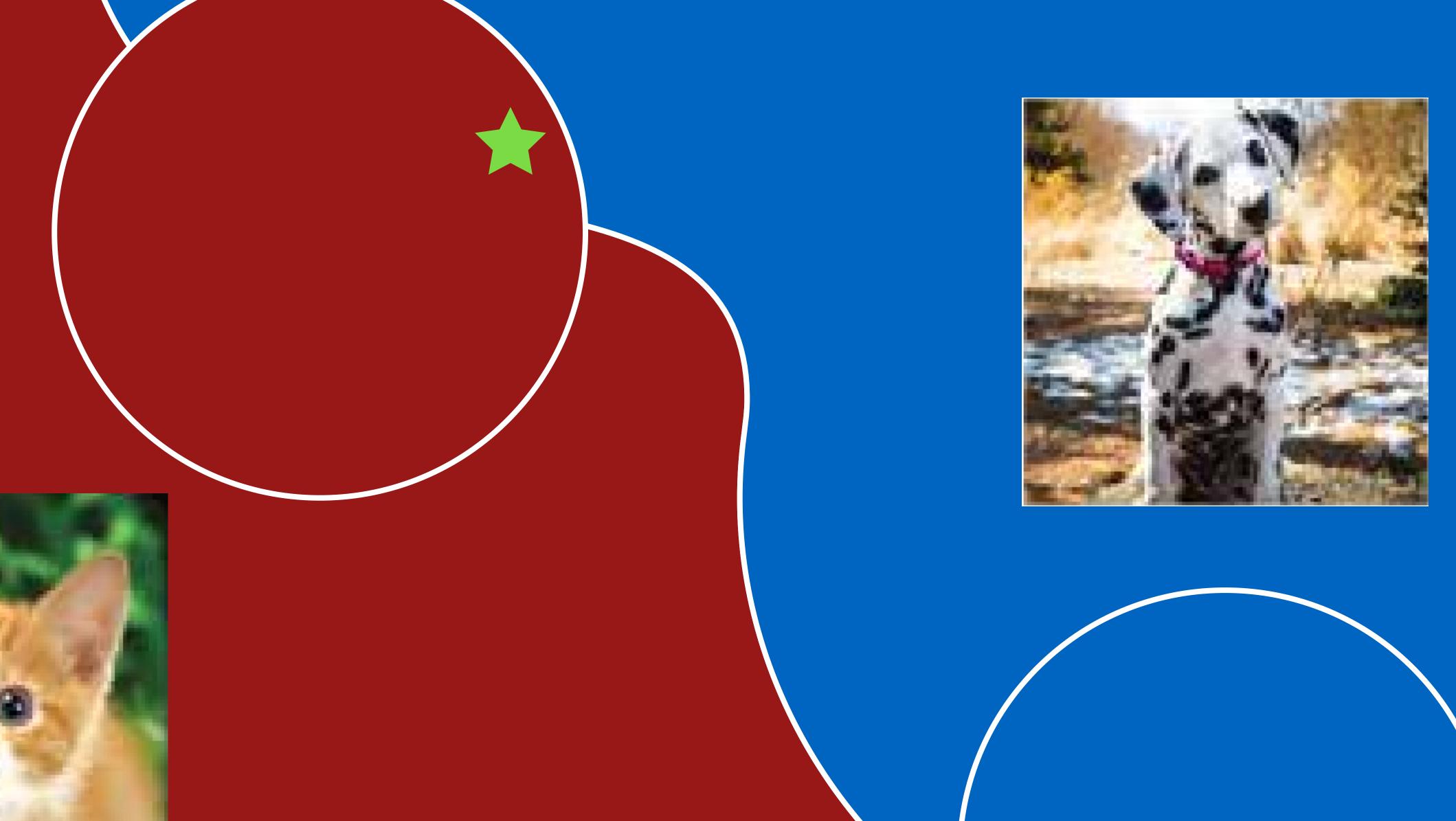
Jörn-Henrik Jacobsen 1*, Jens Behrmann^{1,2}, Richard Zemel¹, Matthias Bethge³

¹Vector Institute and University of Toronto

²University of Bremen, Center for Industrial Mathematics

³University of Tübingen



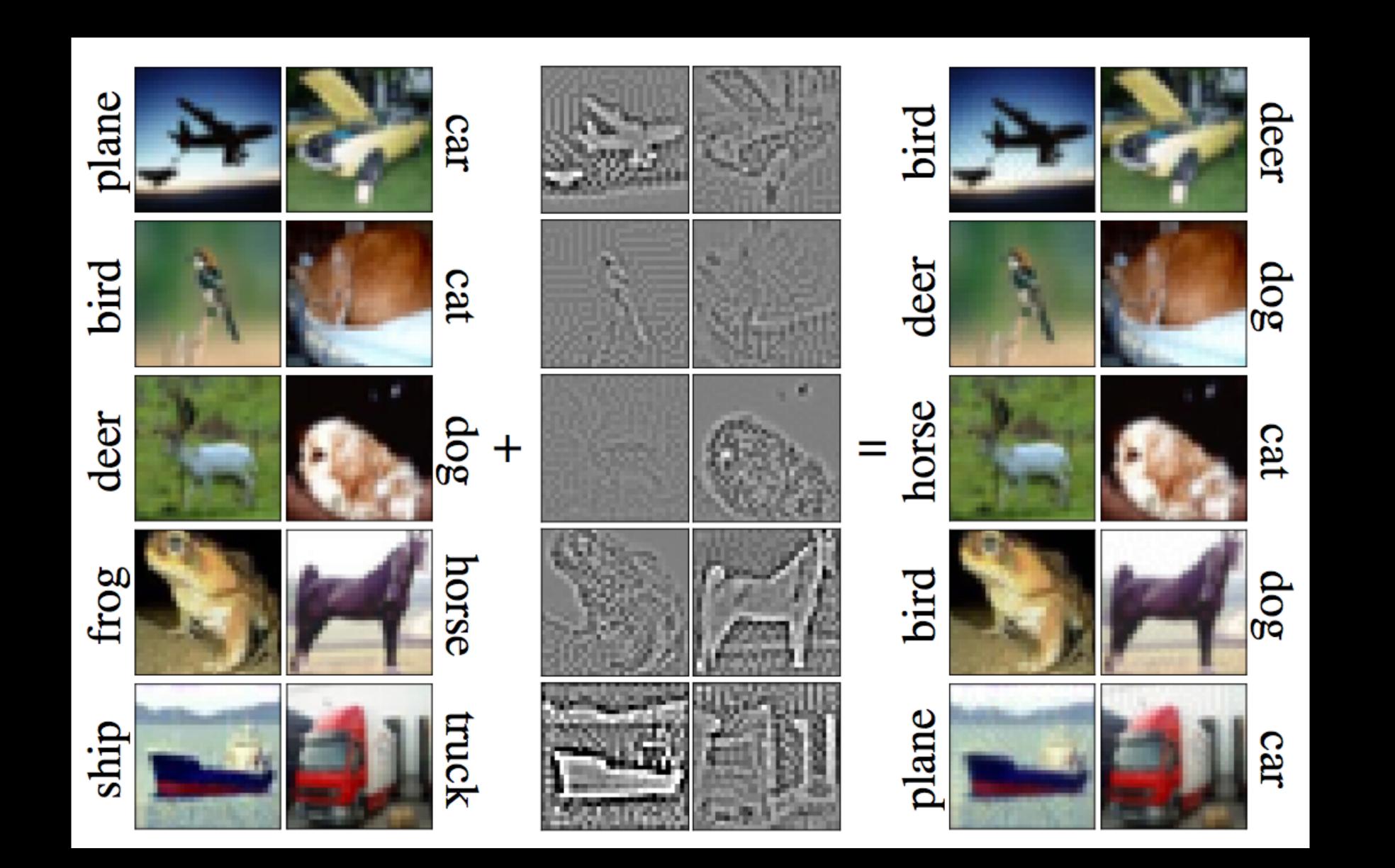


Charles C. Bridge

Charles C. Bridge

Wasserstein Adversarial Examples via Projected Sinkhorn Iterations

Eric Wong¹ Frank R. Schmidt² J. Zico Kolter³⁴

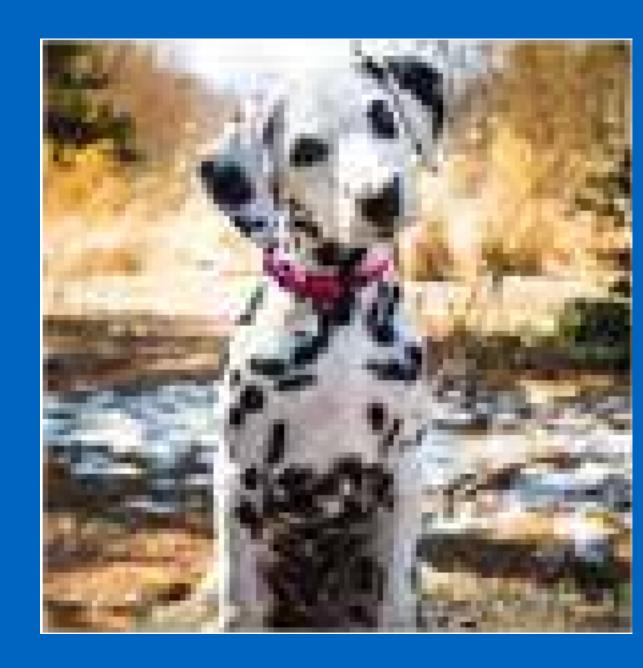


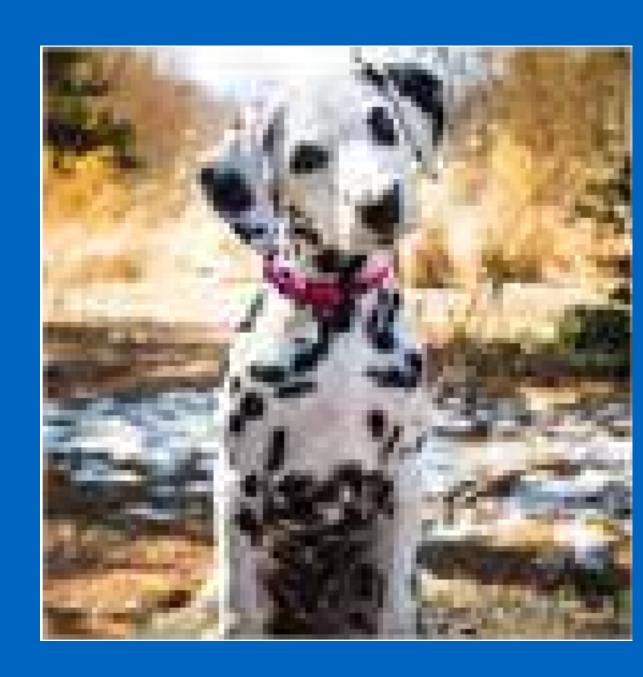
Recent advances in ... Defending Against Adversarial Examples

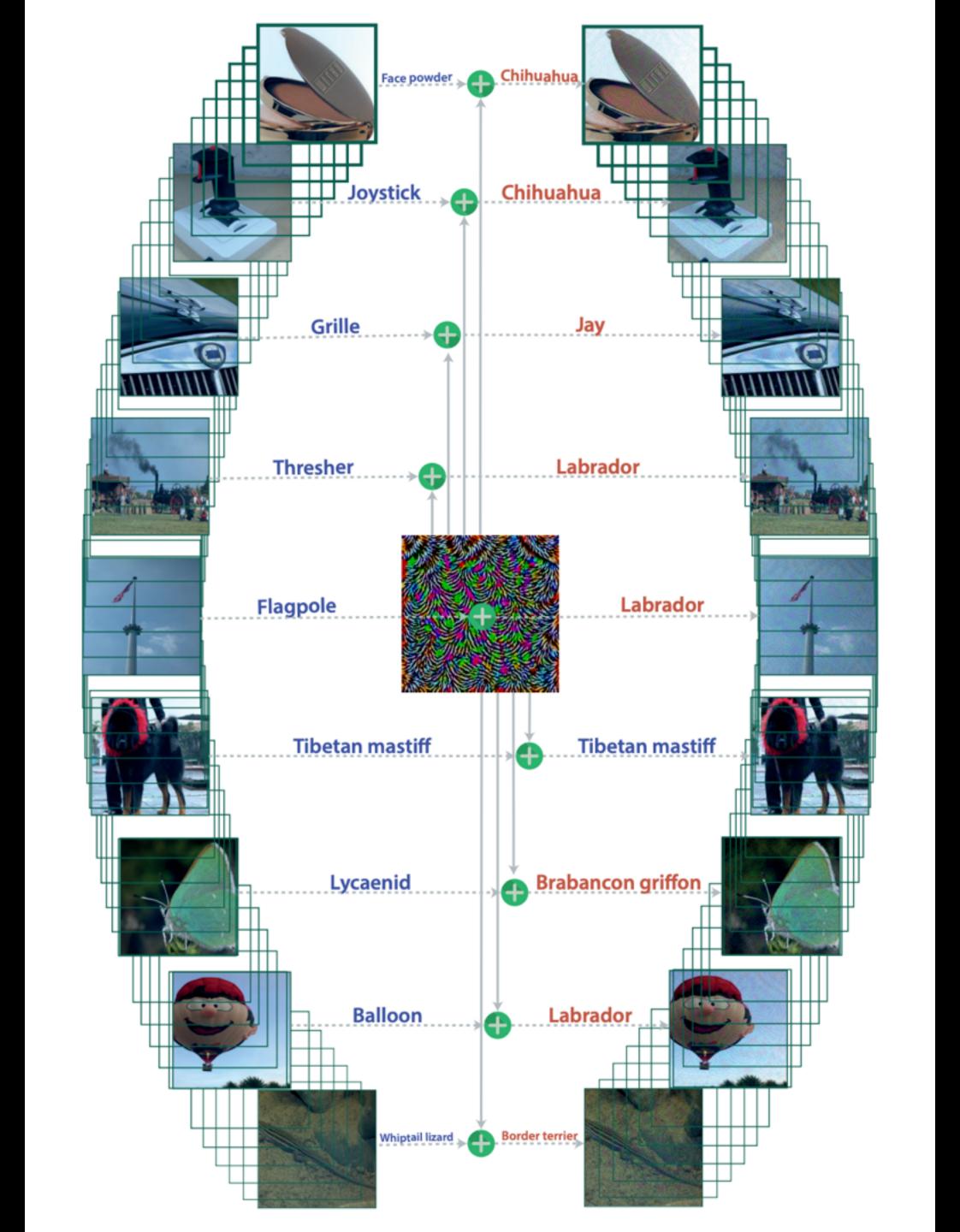
Defenses I *don't* believe will be effective

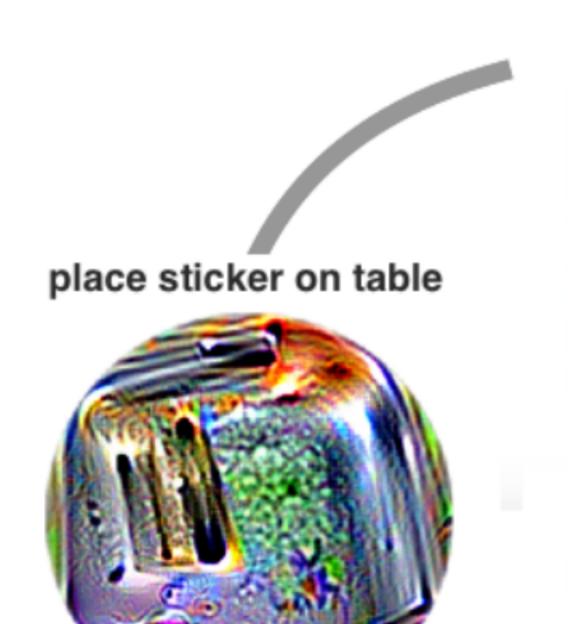
... a bit more background

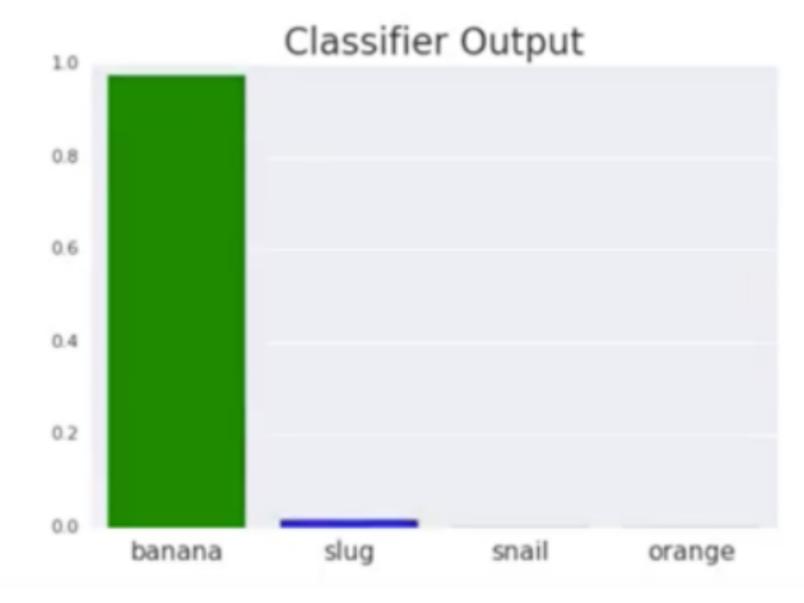
Transferability

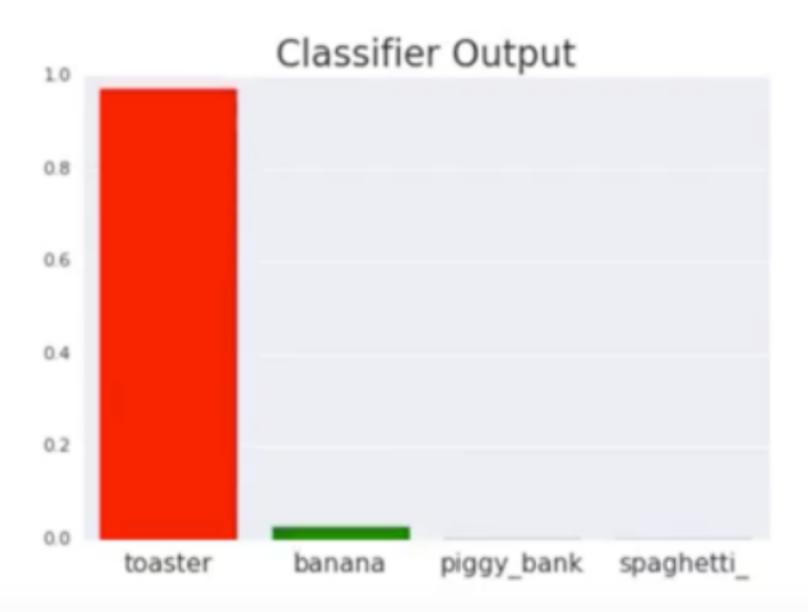












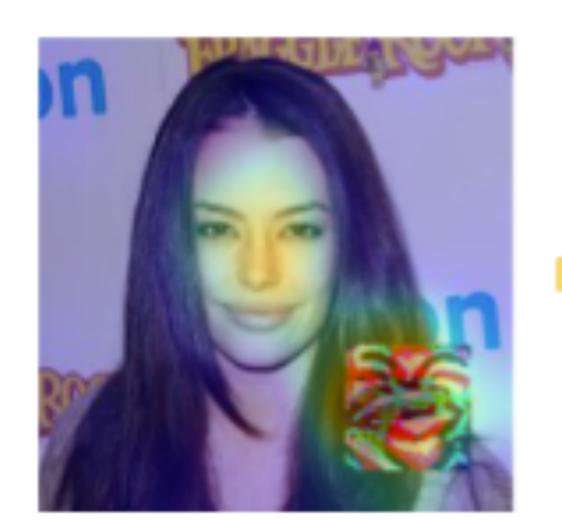
SentiNet: Detecting Physical Attacks Against Deep Learning Systems

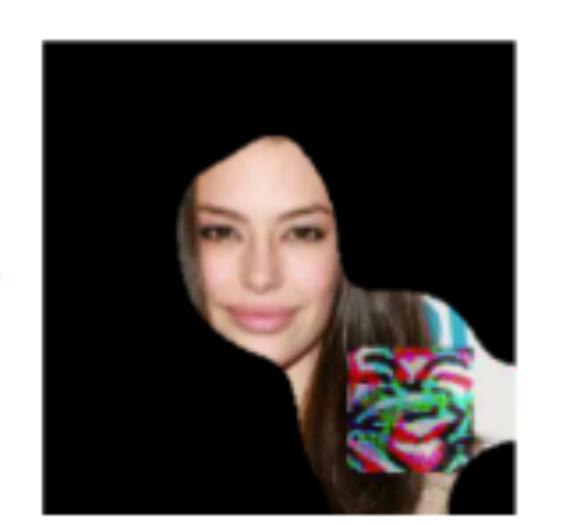
Edward Chou¹

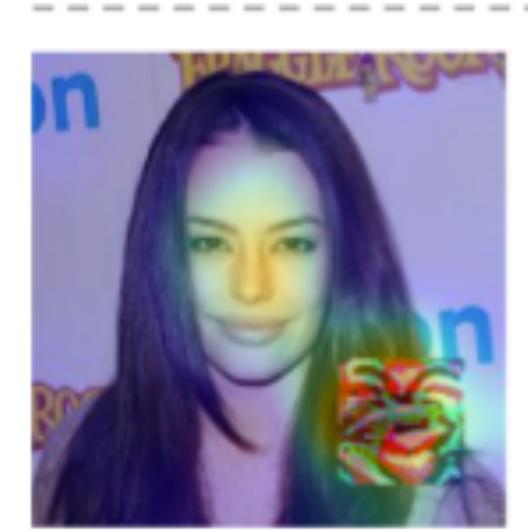
Florian Tramèr¹

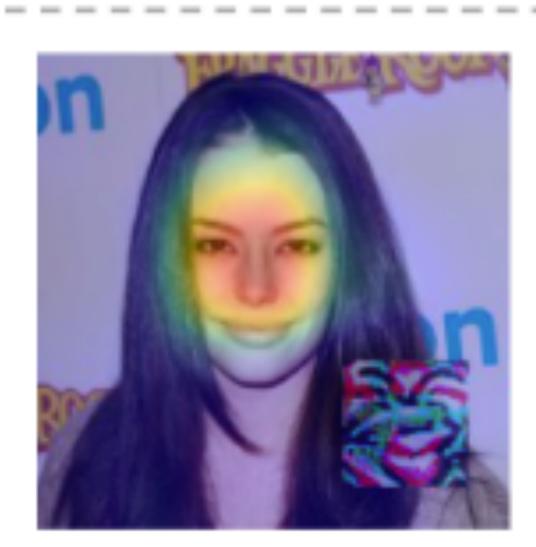
Giancarlo Pellegrino^{1,2}

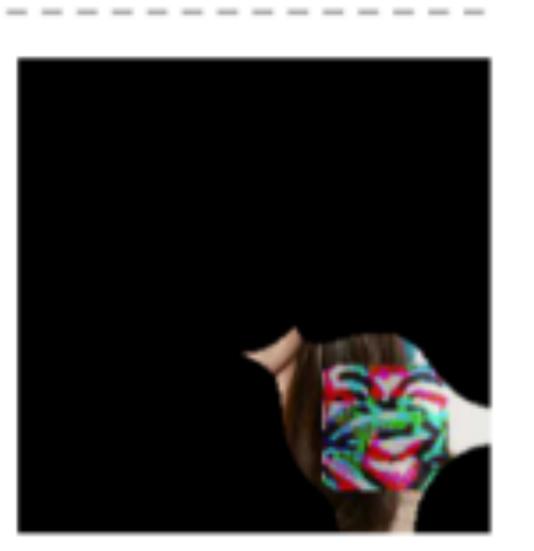
Dan Boneh¹

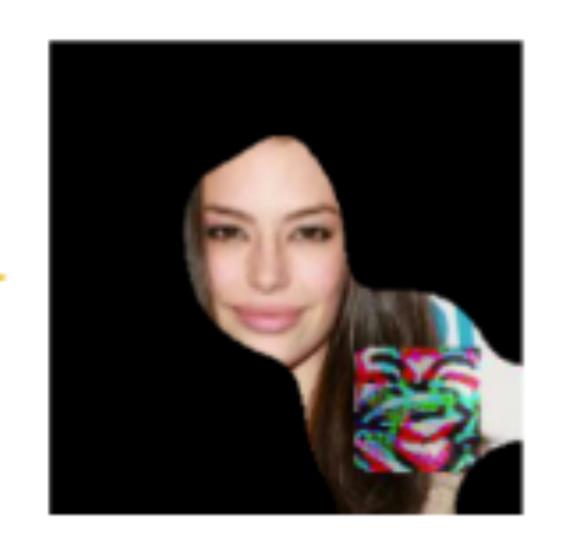


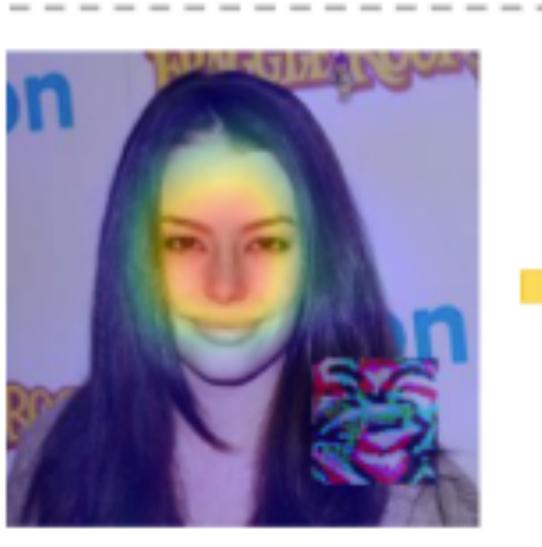


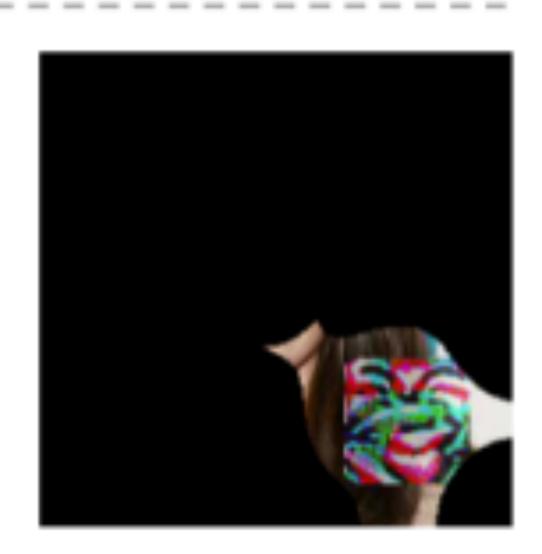






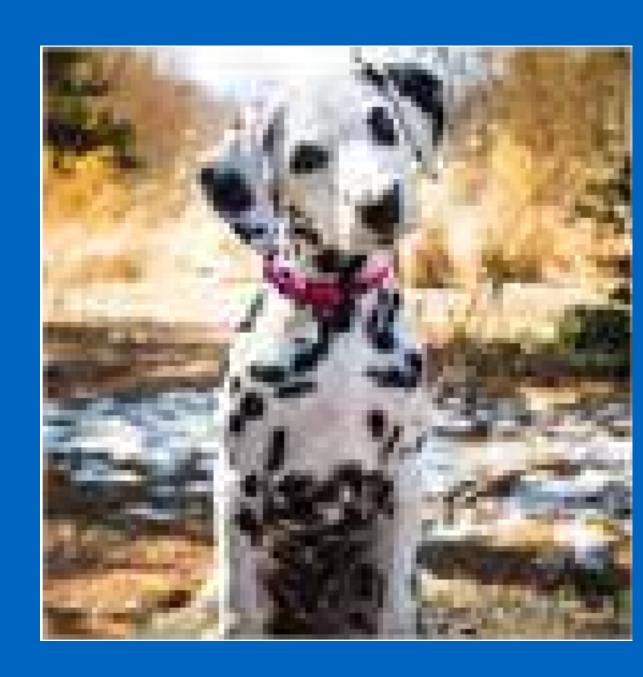


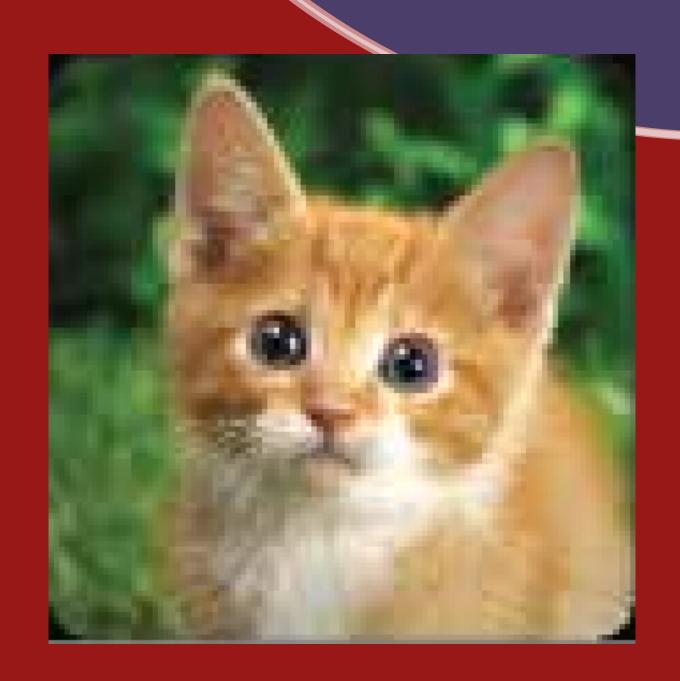


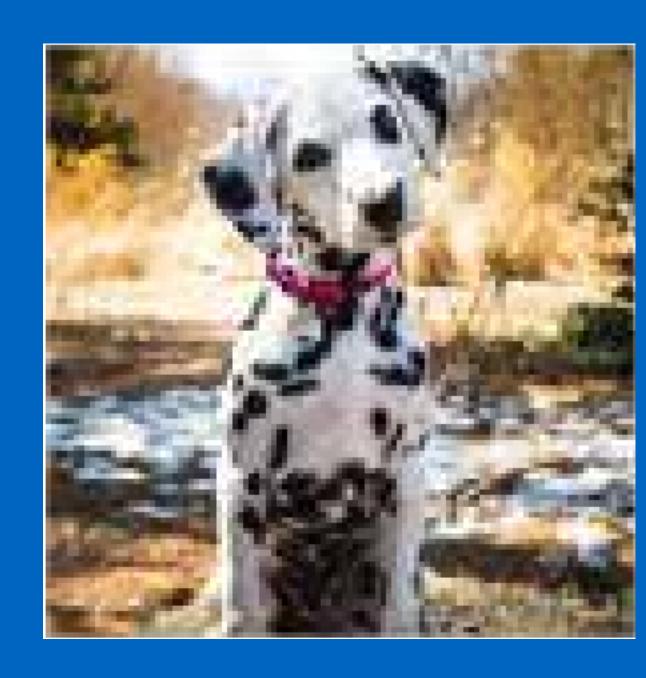


Sitatapatra: Blocking the Transfer of Adversarial Samples

Ilia Shumailov * 1 Xitong Gao * 2 Yiren Zhao * 1 Robert Mullins 1 Ross Anderson 1 Cheng-Zhong Xu 2

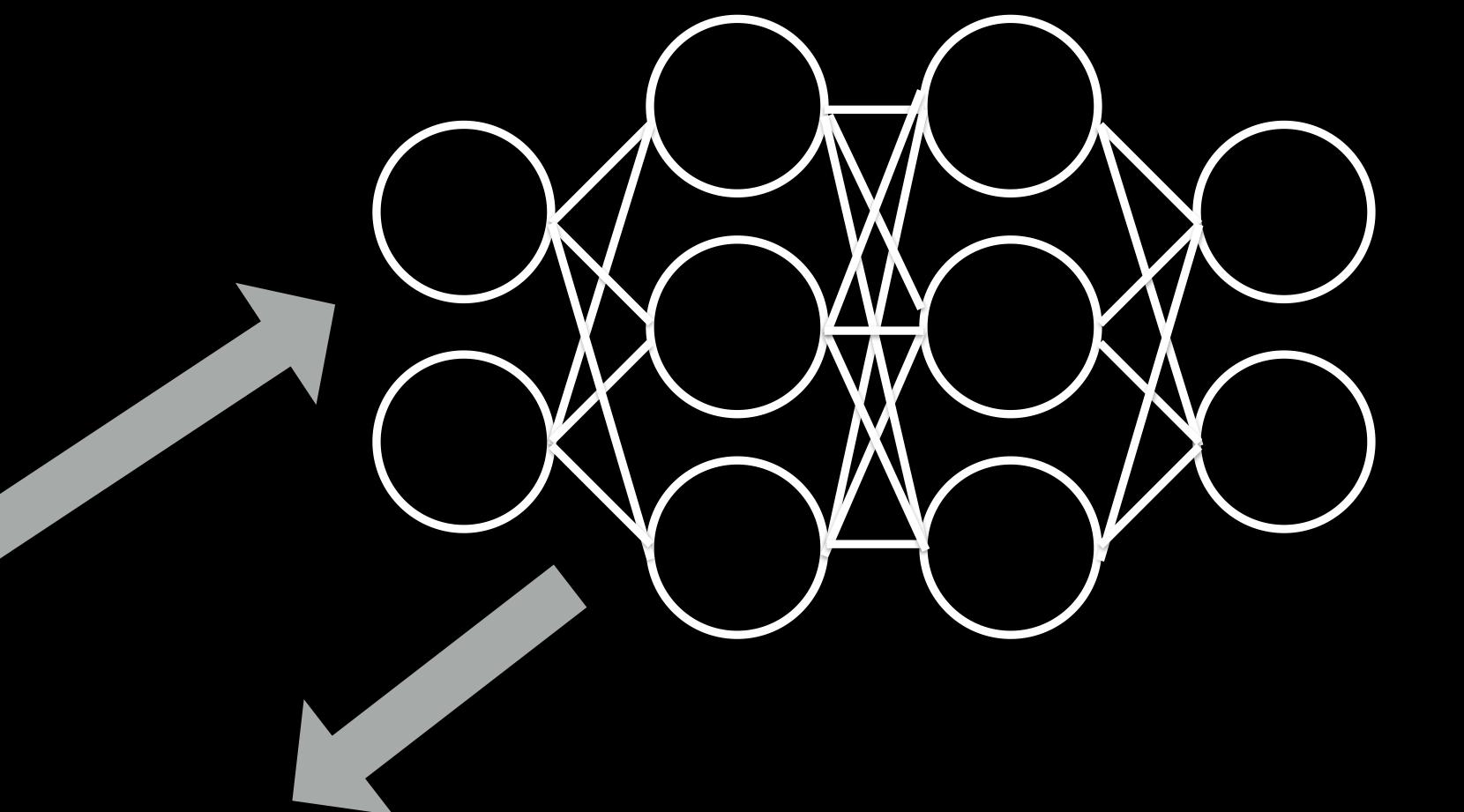




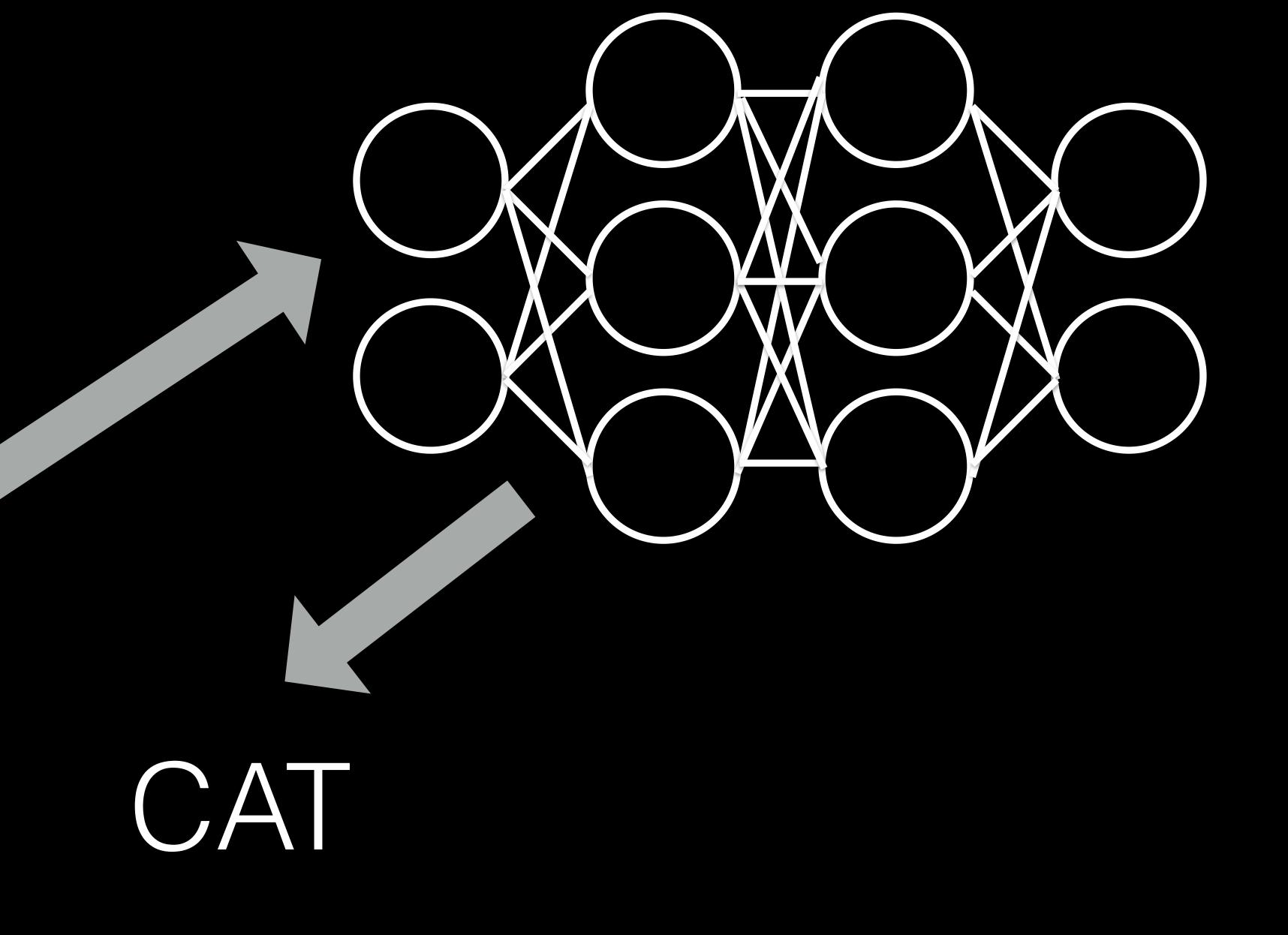


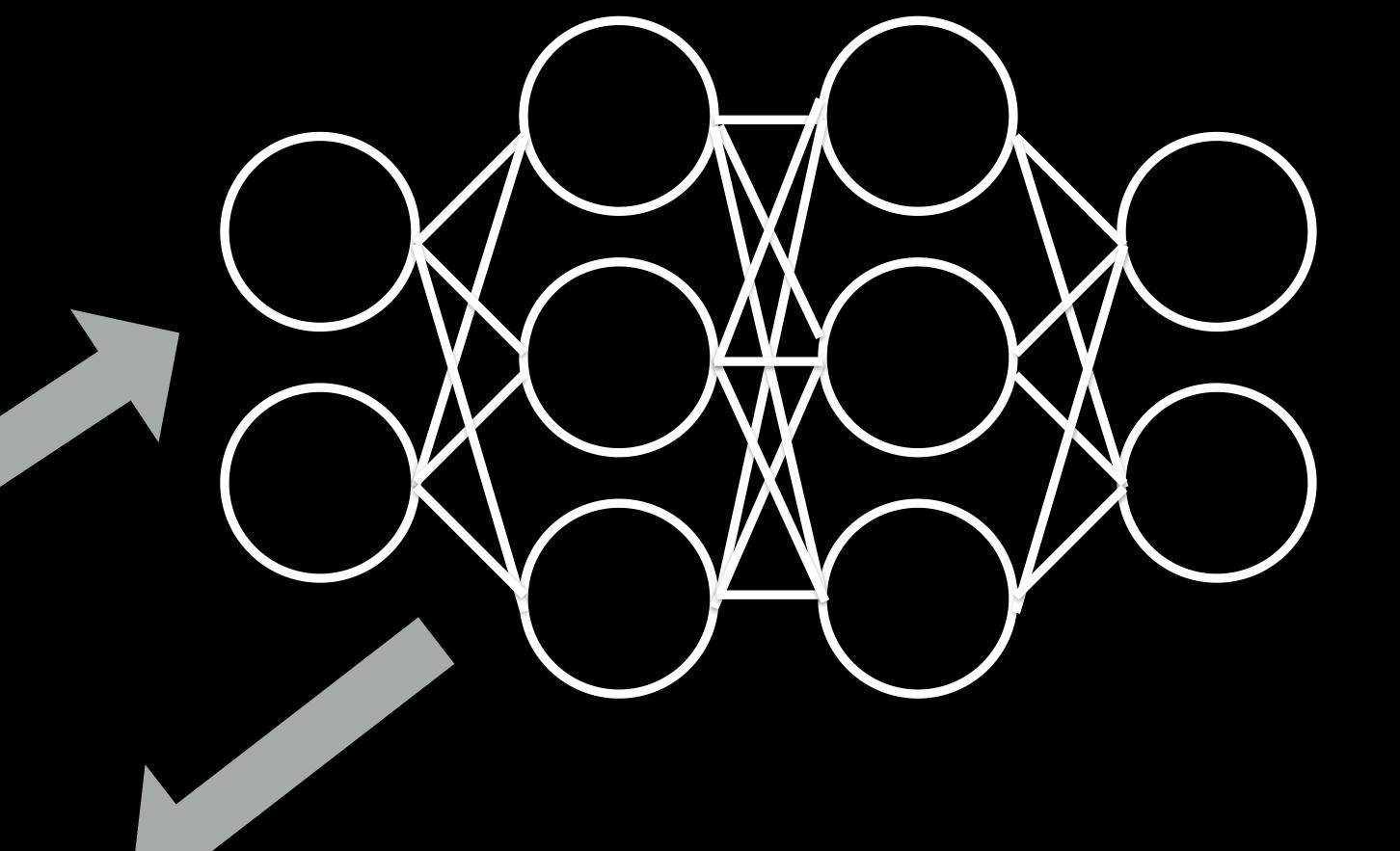
Stateful Detection of Black-Box Adversarial Attacks

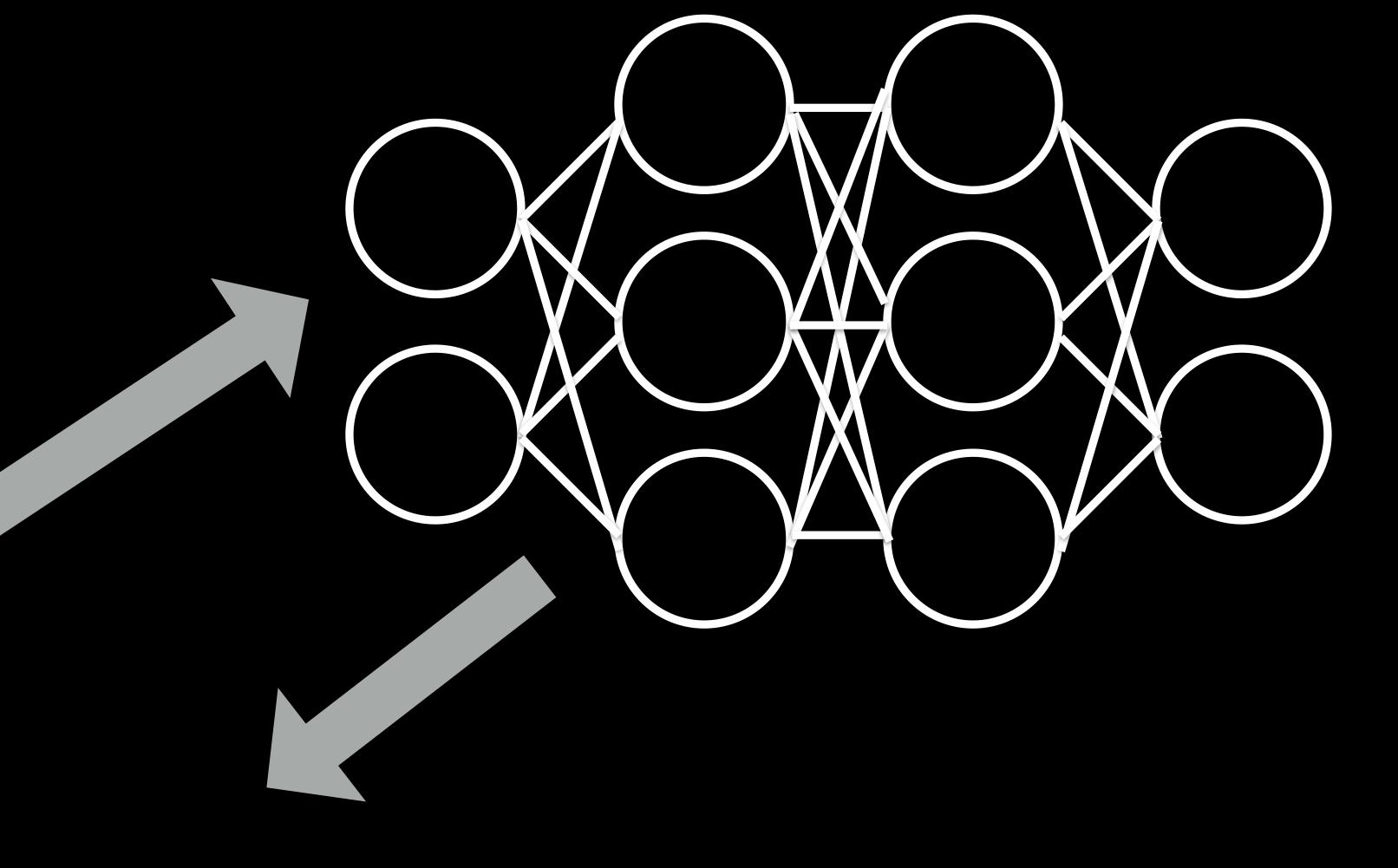
Steven Chen University of California, Berkeley Nicholas Carlini Google Research David Wagner University of California, Berkeley



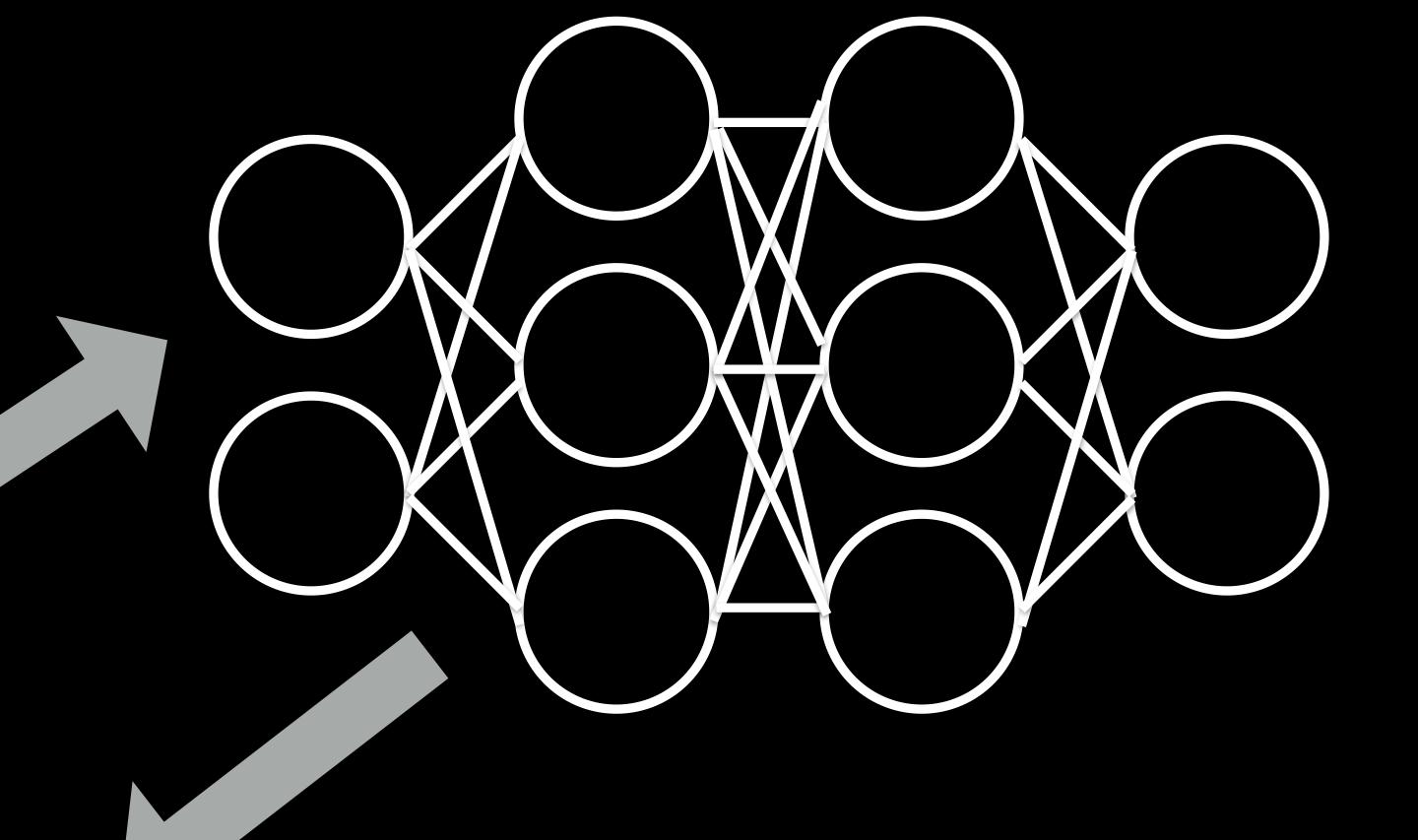
CAT

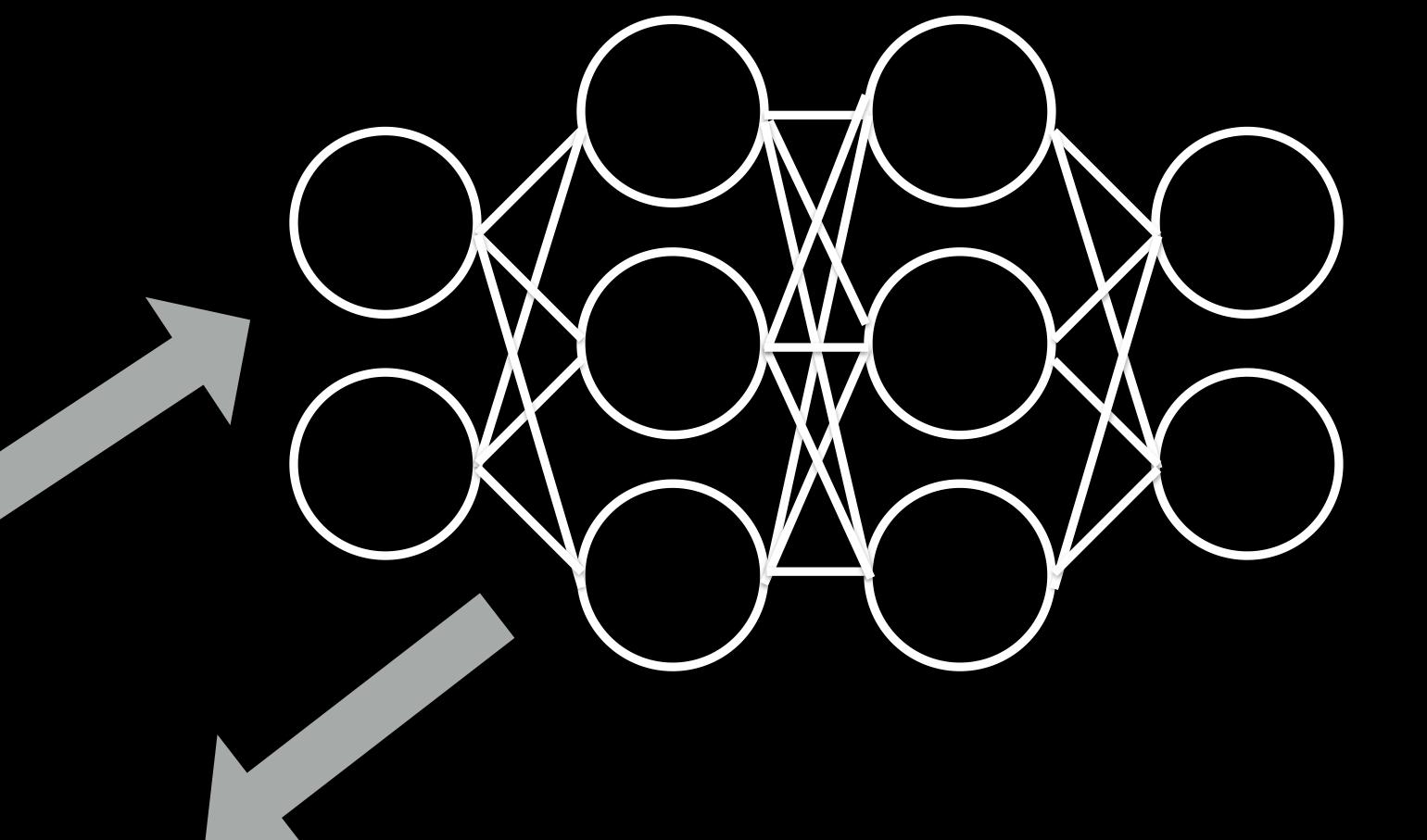


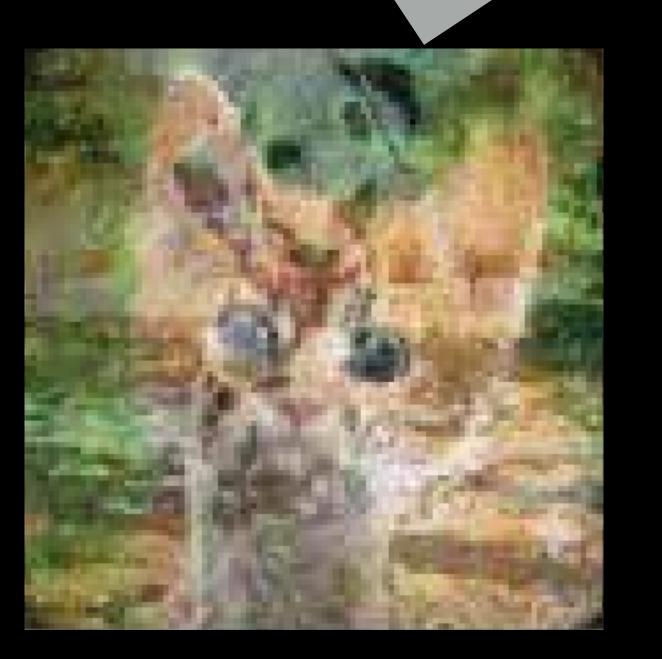


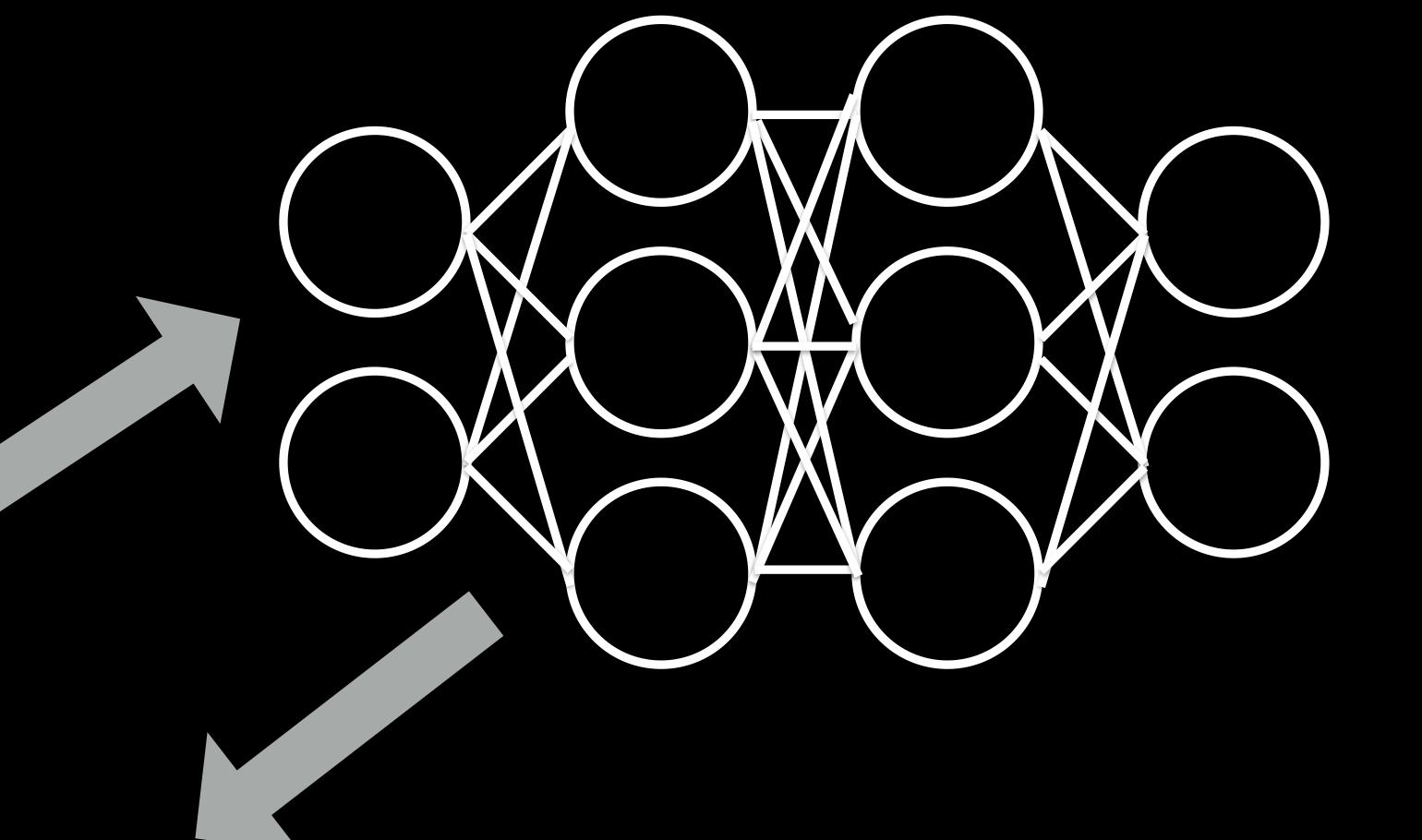


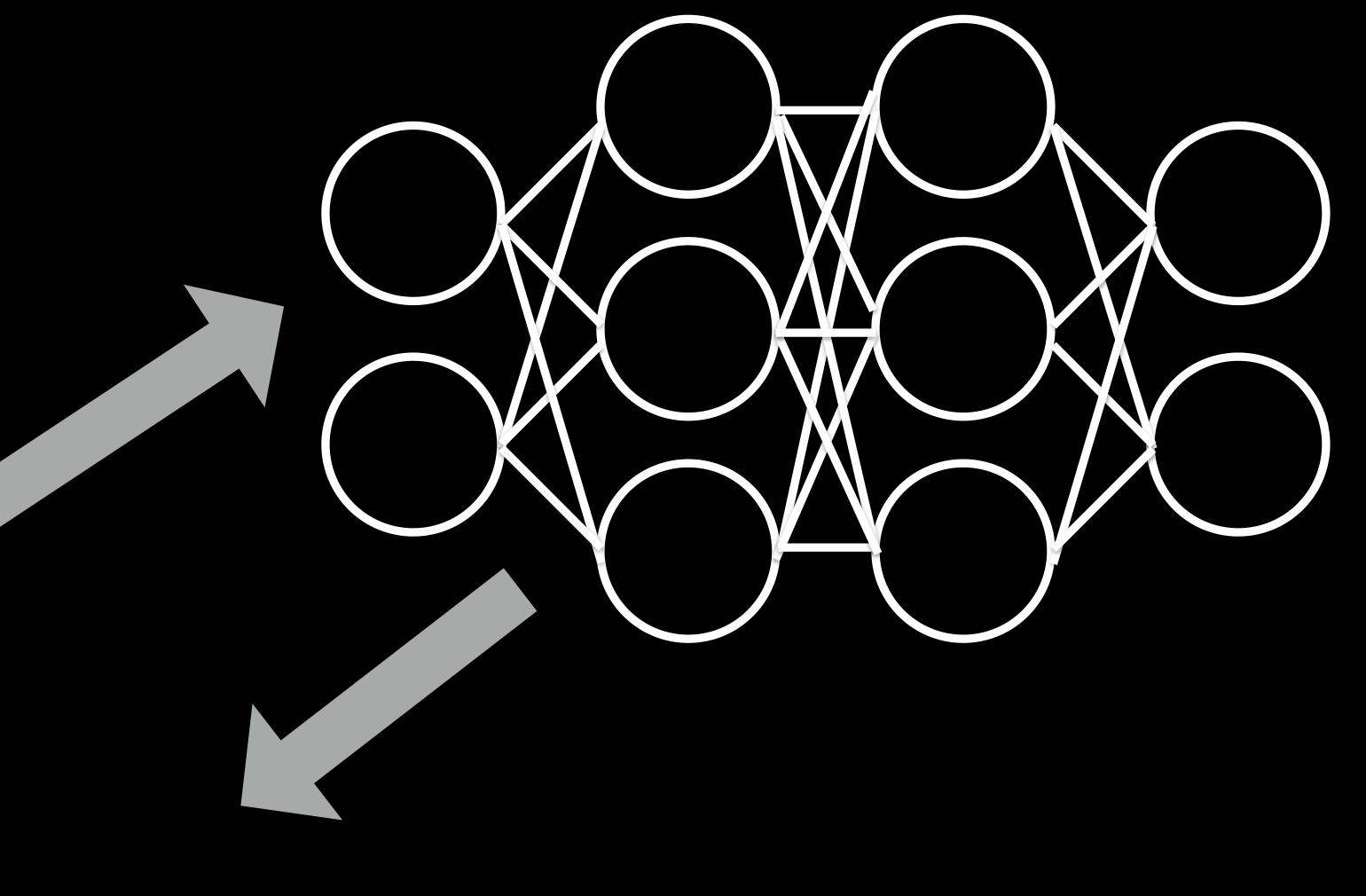


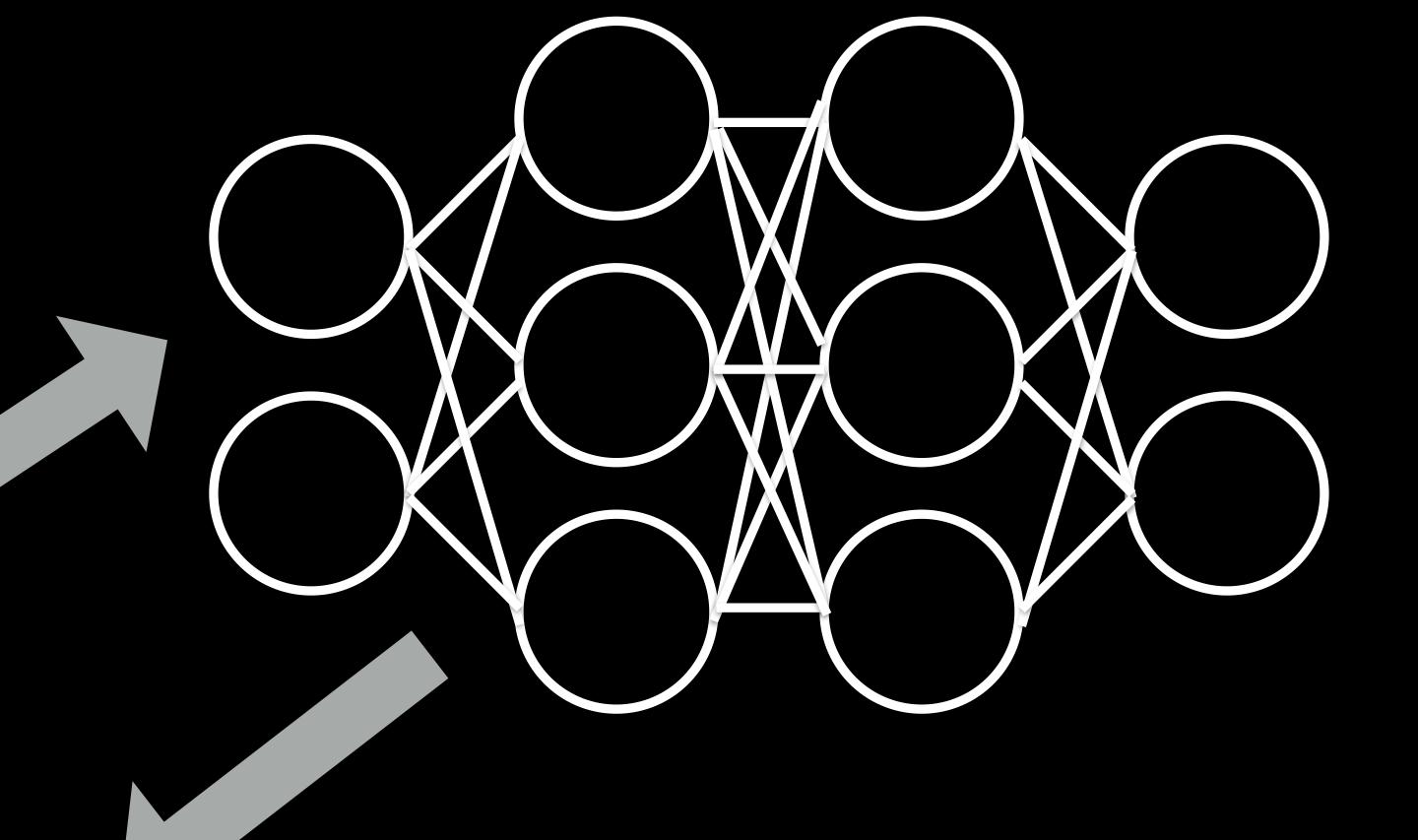


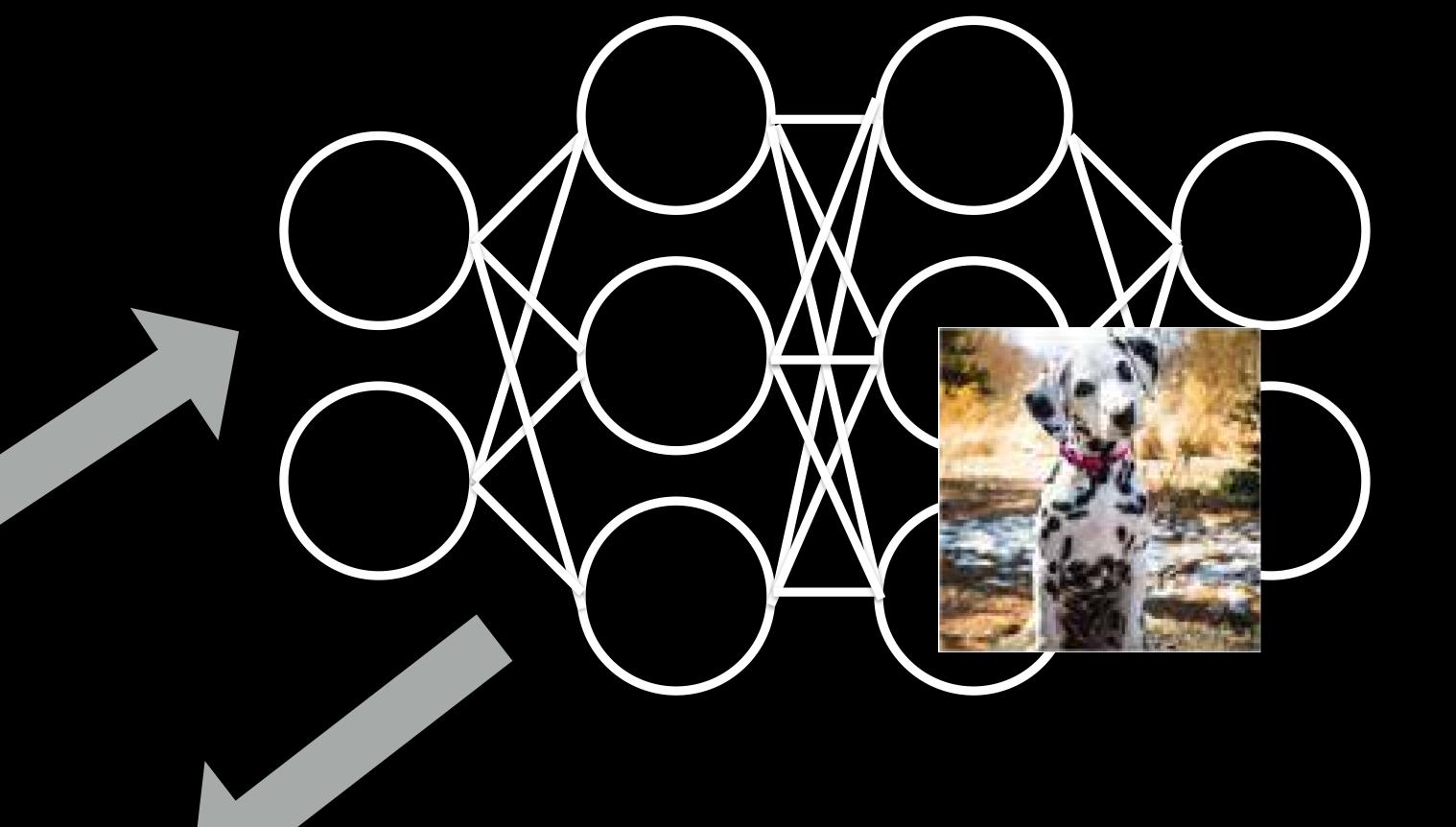


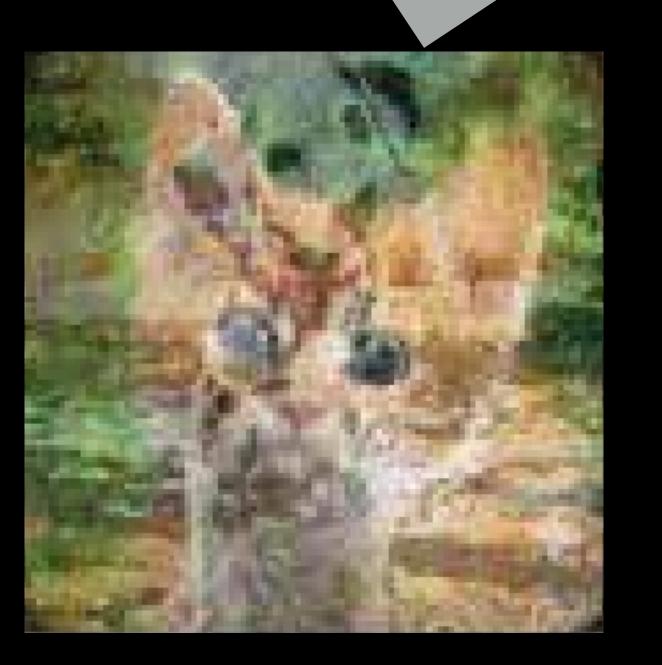


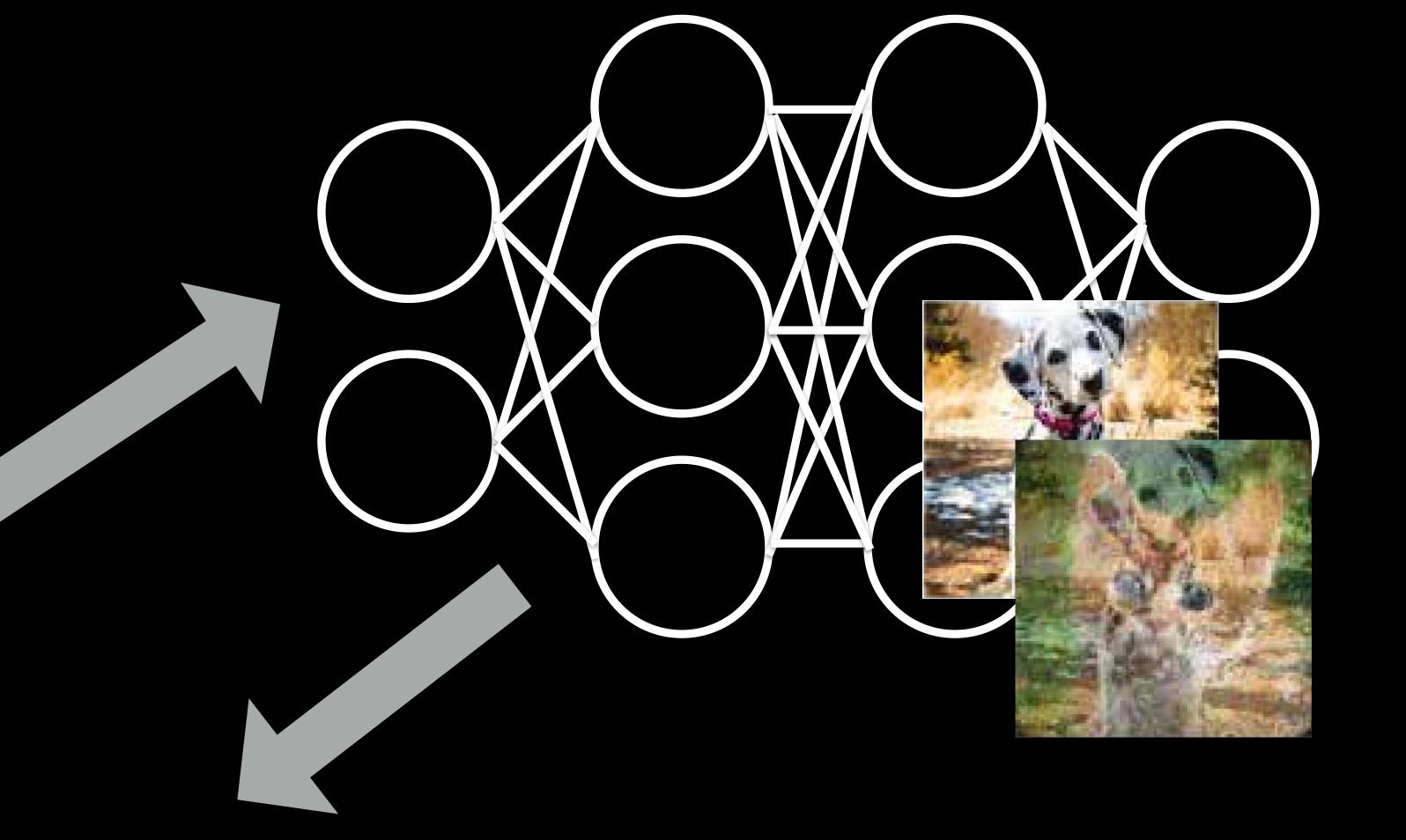


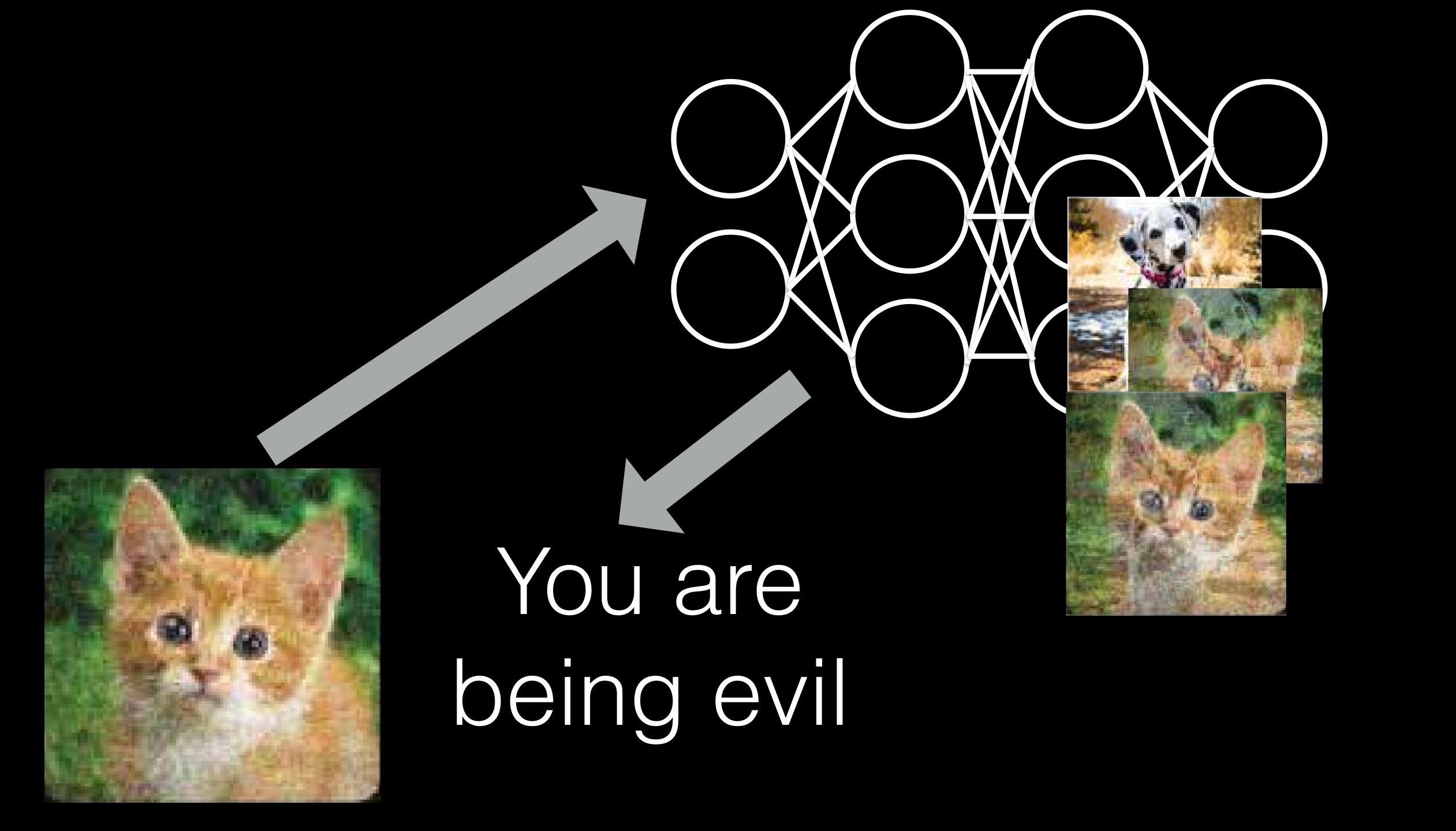












Defenses I do believe will be effective

Adversarially Robust Generalization Requires More Data

Ludwig Schmidt S

Shibani Santurkar

Dimitris Tsipras MIT

MIT

Aleksander Madry

Kunal Talwar Google Brain

MIT

Adversarially Robust Generalization Just Requires More Unlabeled Data

Unlabeled Data Improves Adversarial Robustness

Yai Stanfo yairc@

Are Labels Required for Improving Adversarial Robustness?

Jonathan Uesato*

Jean-Baptiste Alayrac*

Po-Sen Huang*

Robert Stanforth

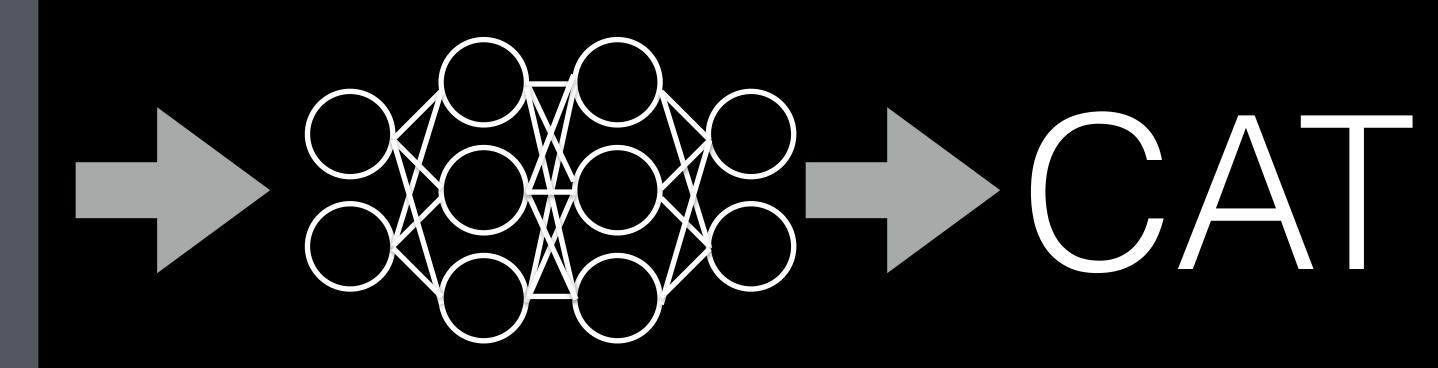
Alhussein Fawzi

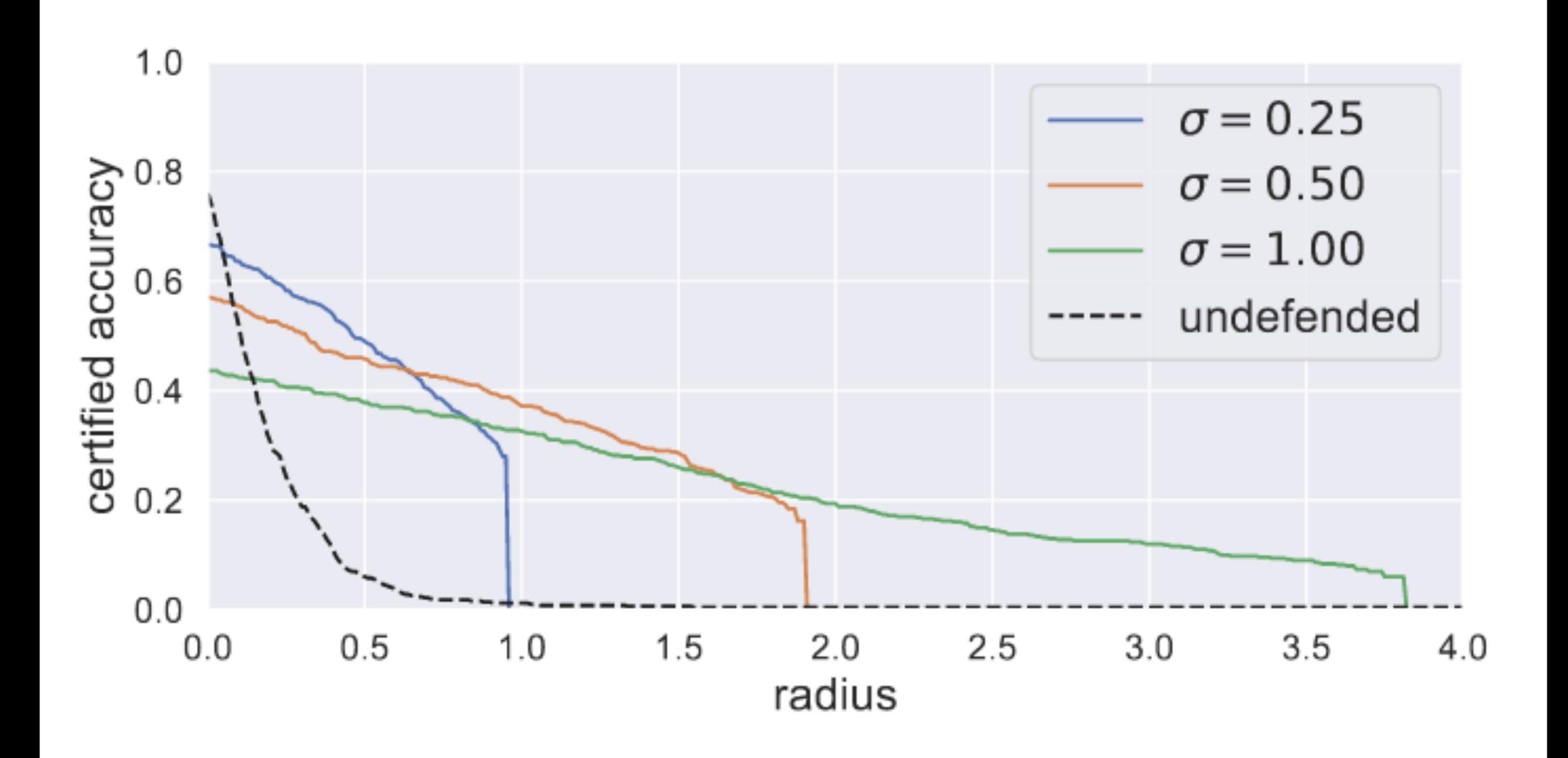
Pushmeet Kohli

Certified Robustness to Adversarial Examples with Differential Privacy

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana Columbia University

Certified Adversarial Robustness via Randomized Smoothing

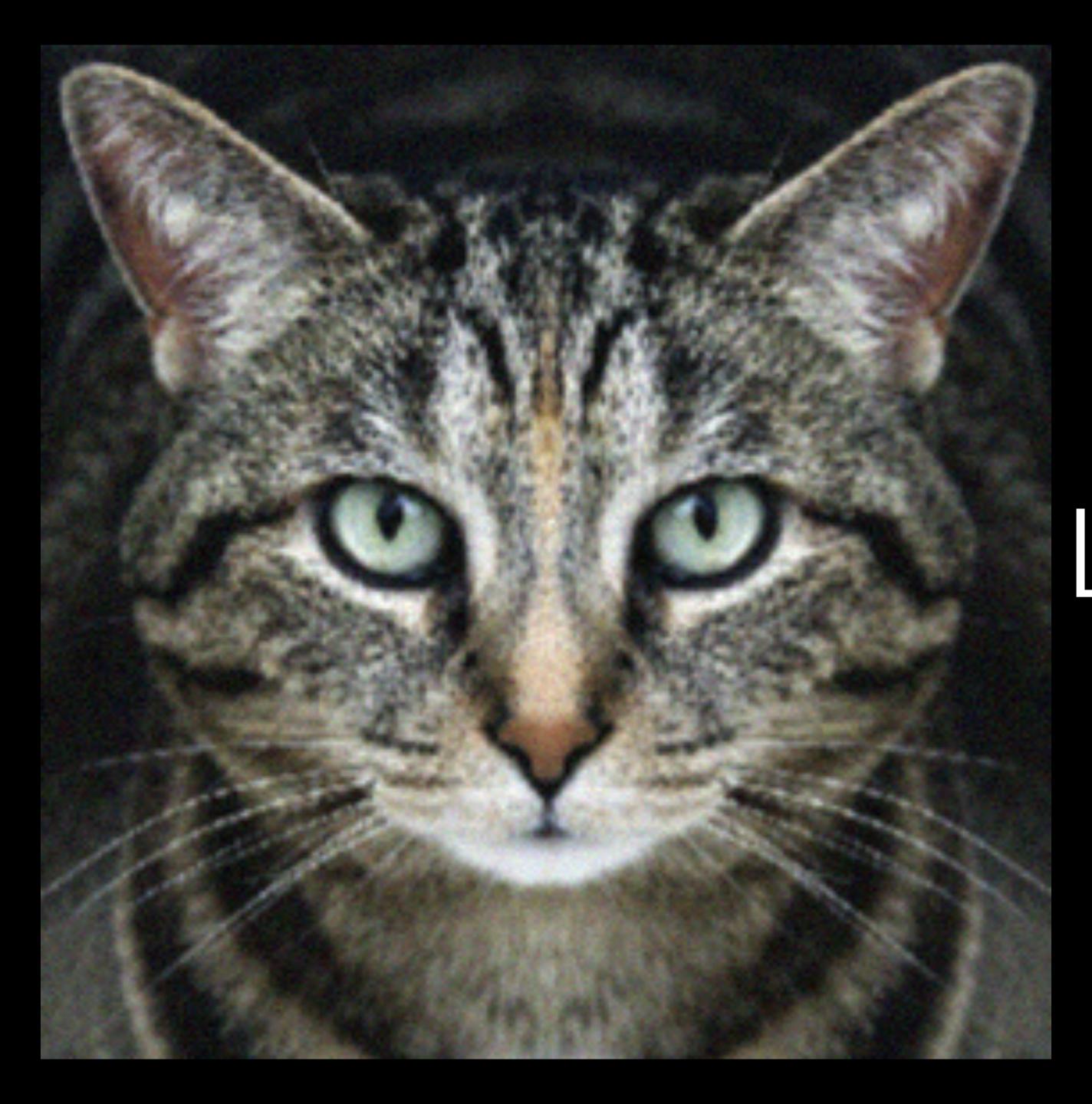




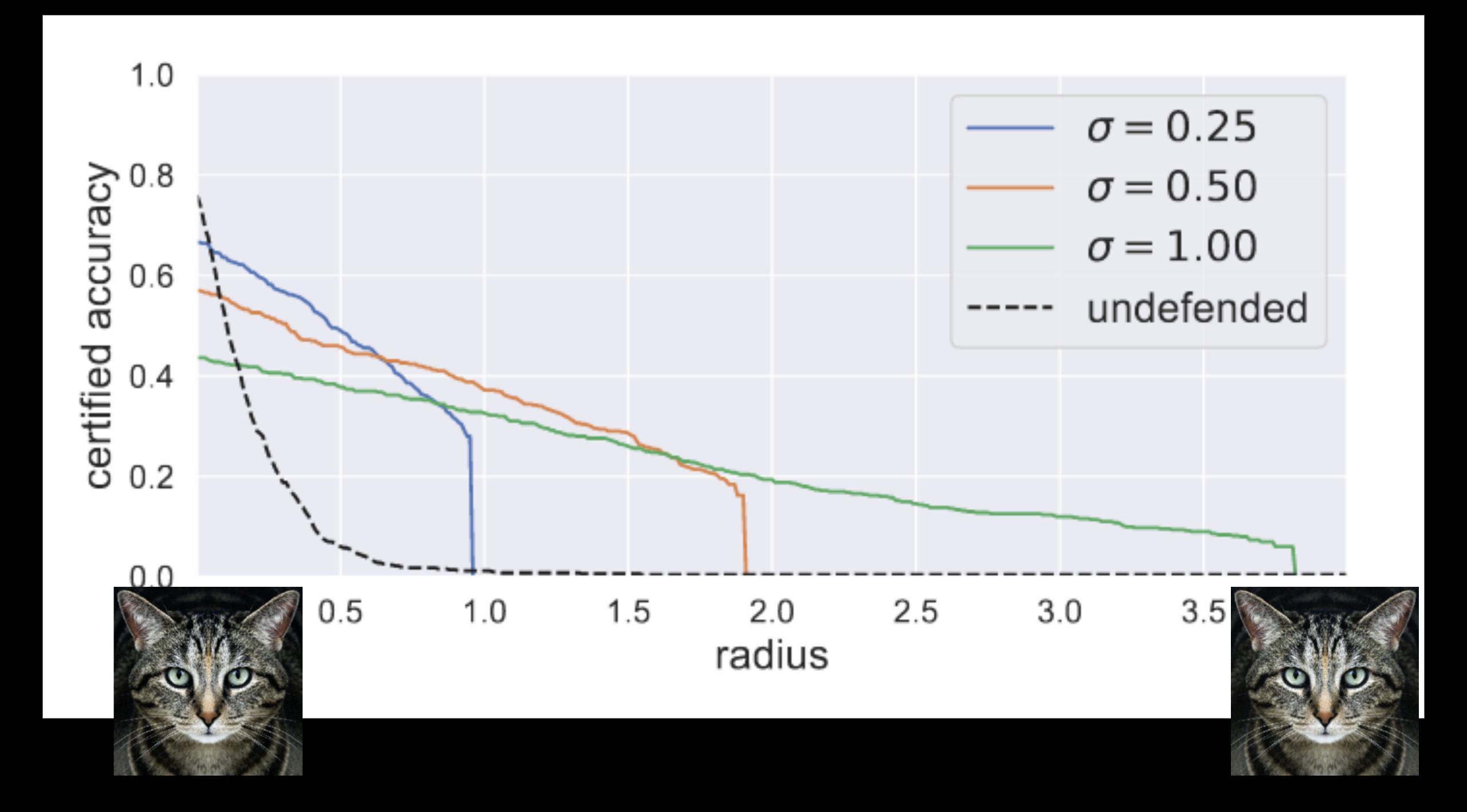
Original

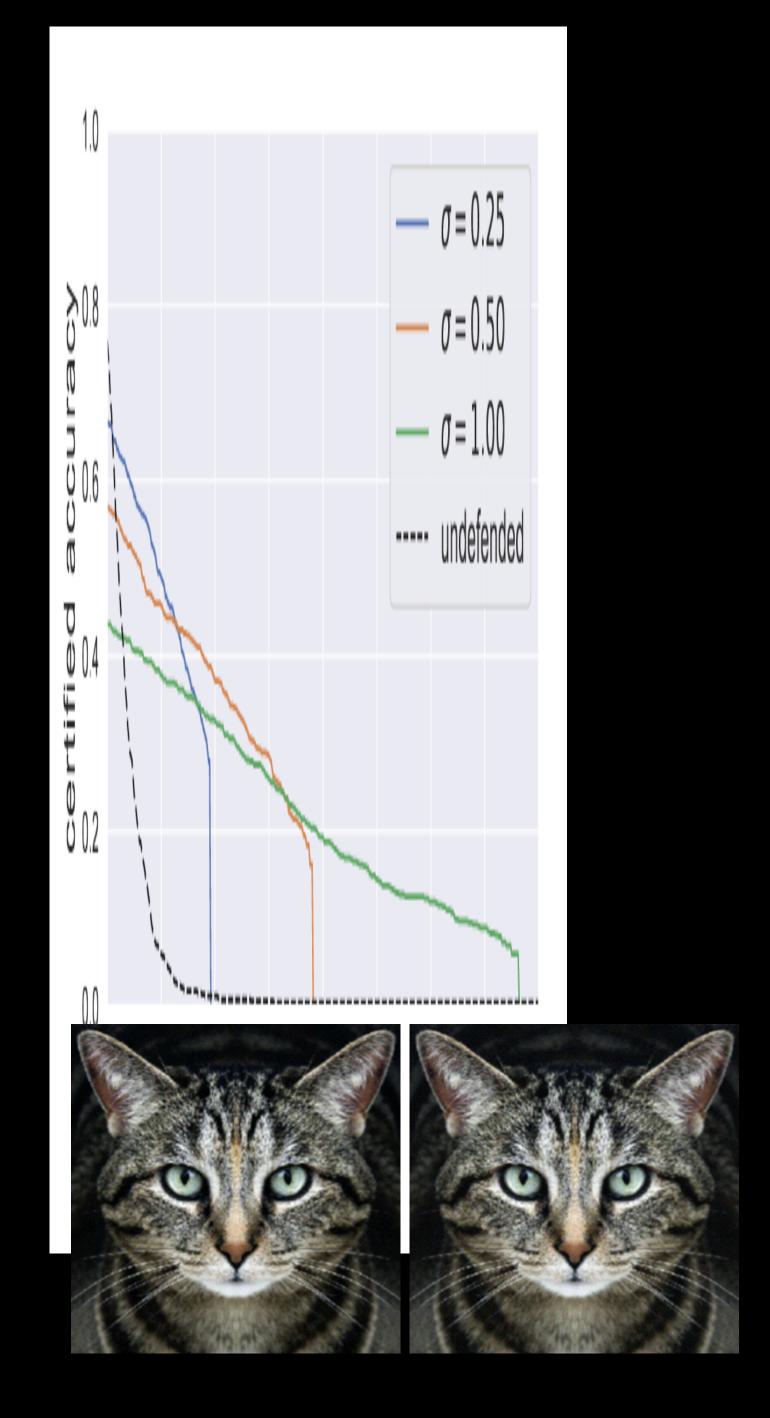
L2 distortion: 4

Original



L2 distortion: 10

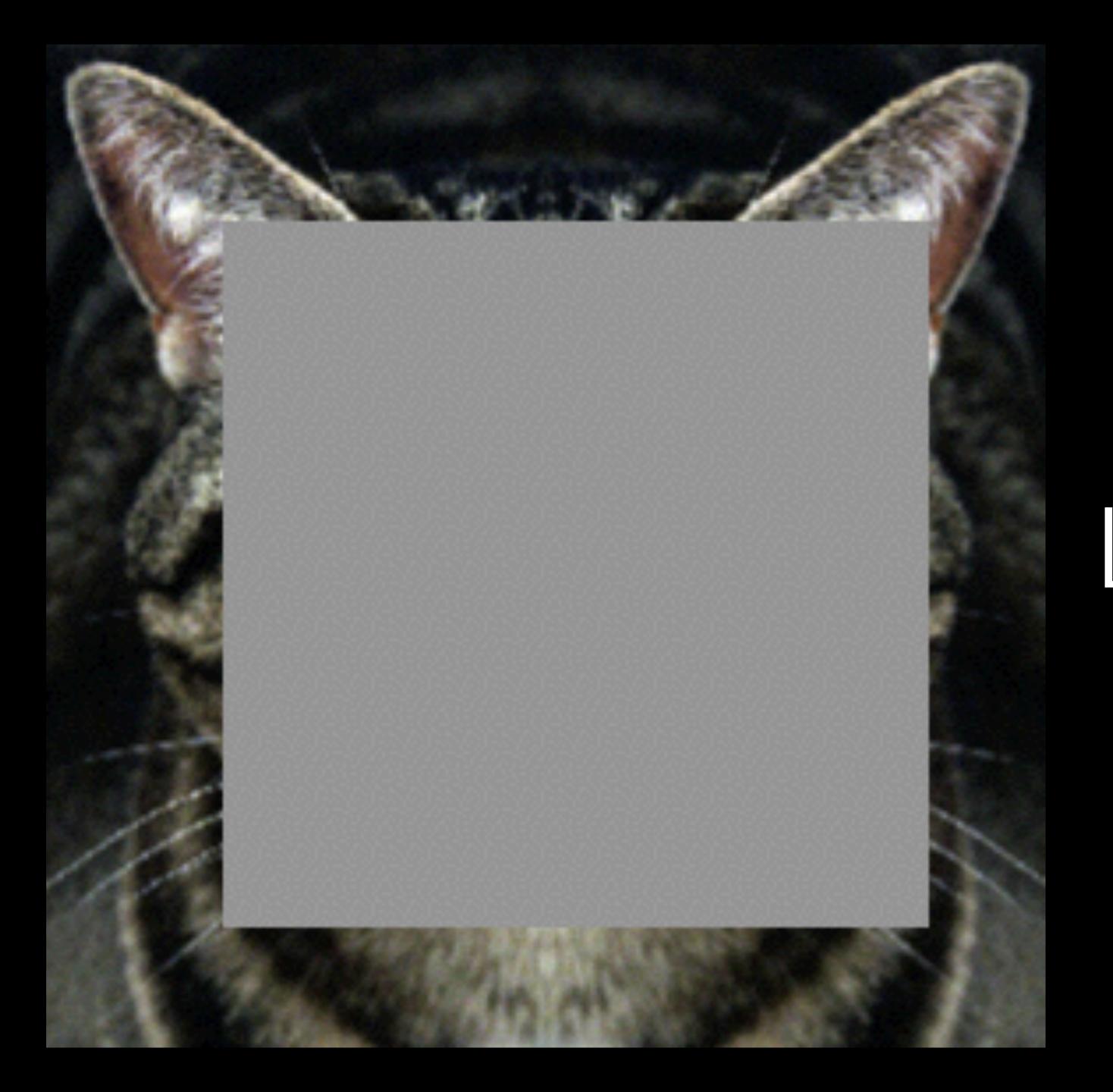




 $L_2 = 75$

Original

L2 distortion: 75

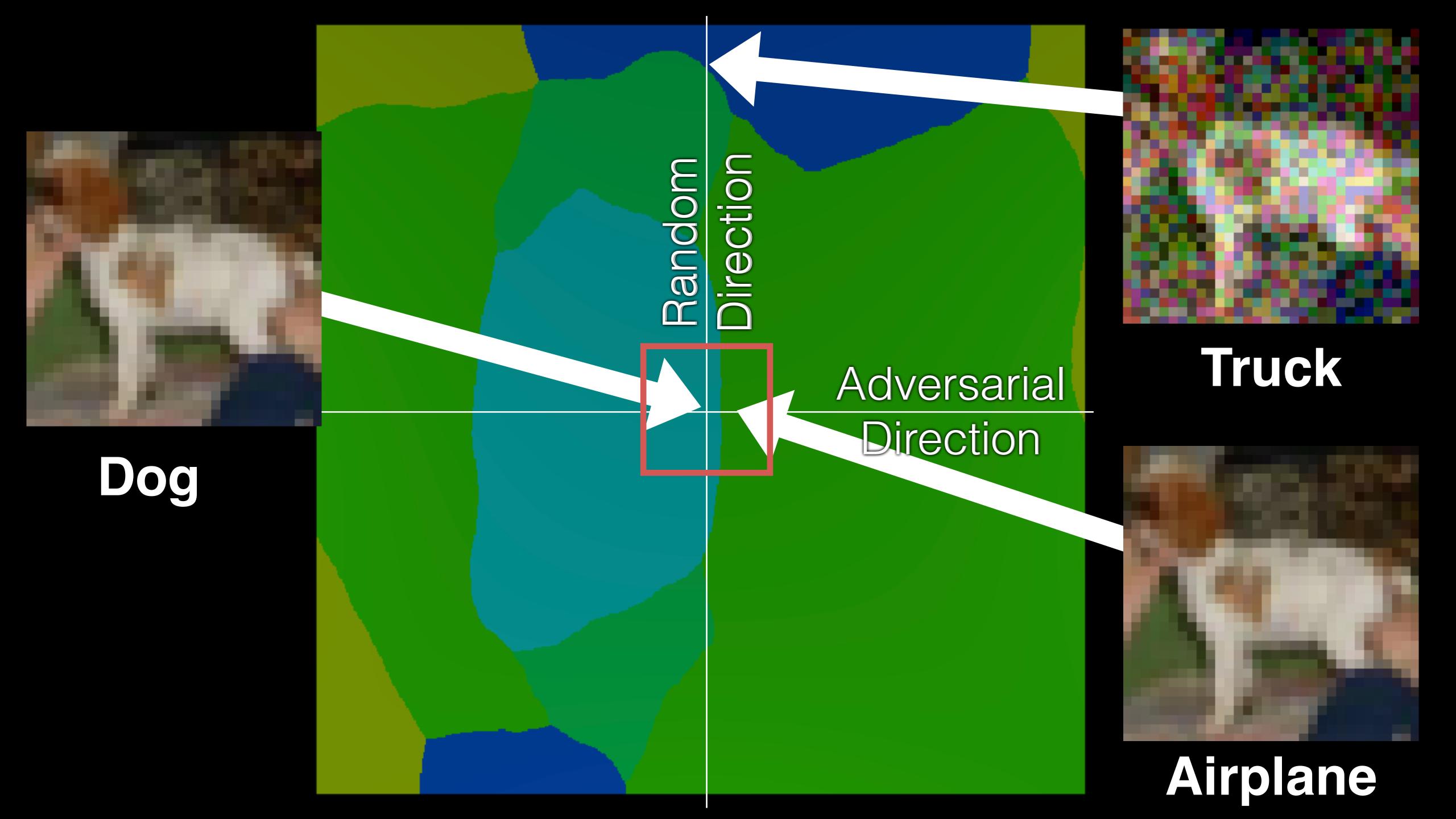


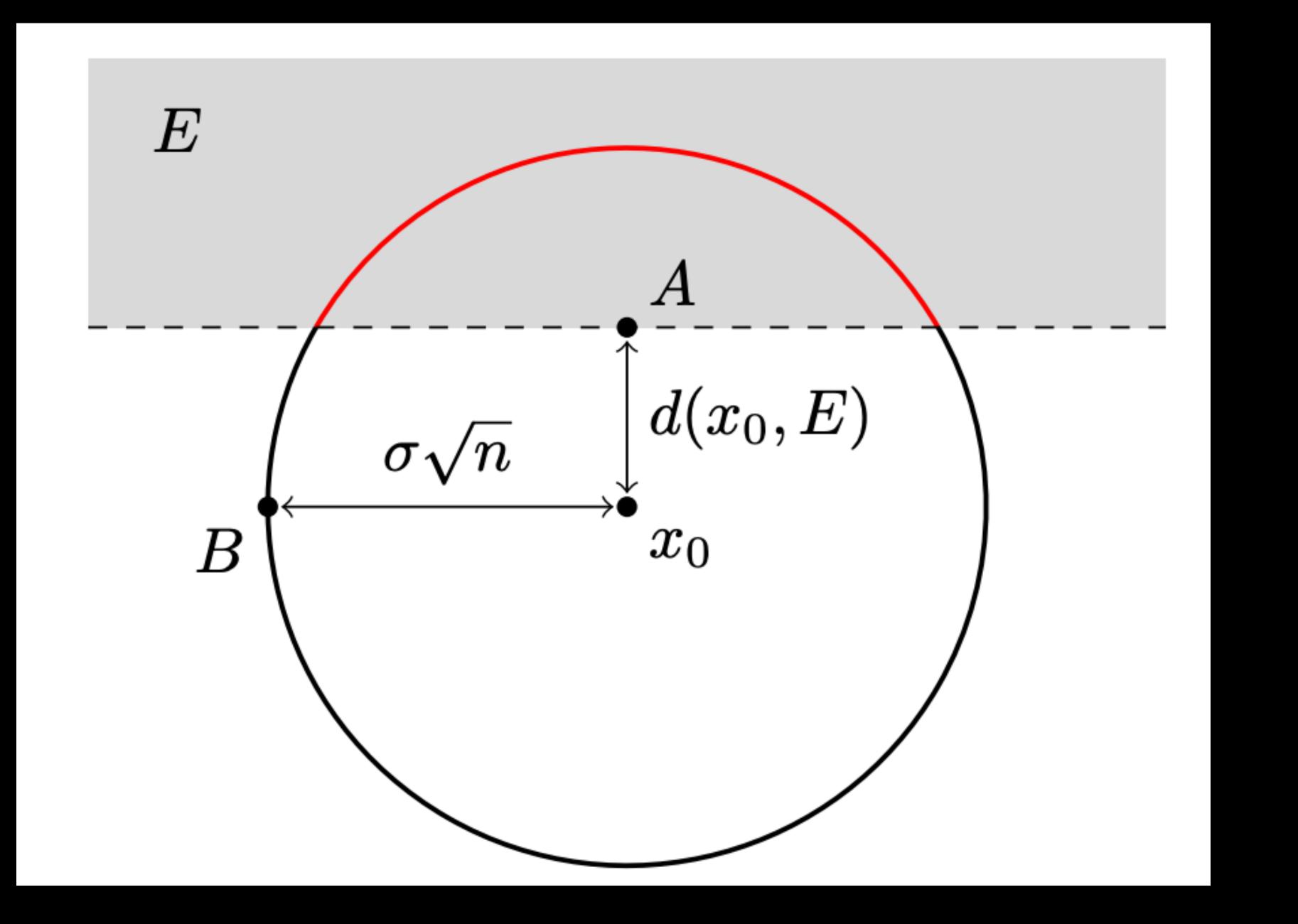
L2 distortion: 75

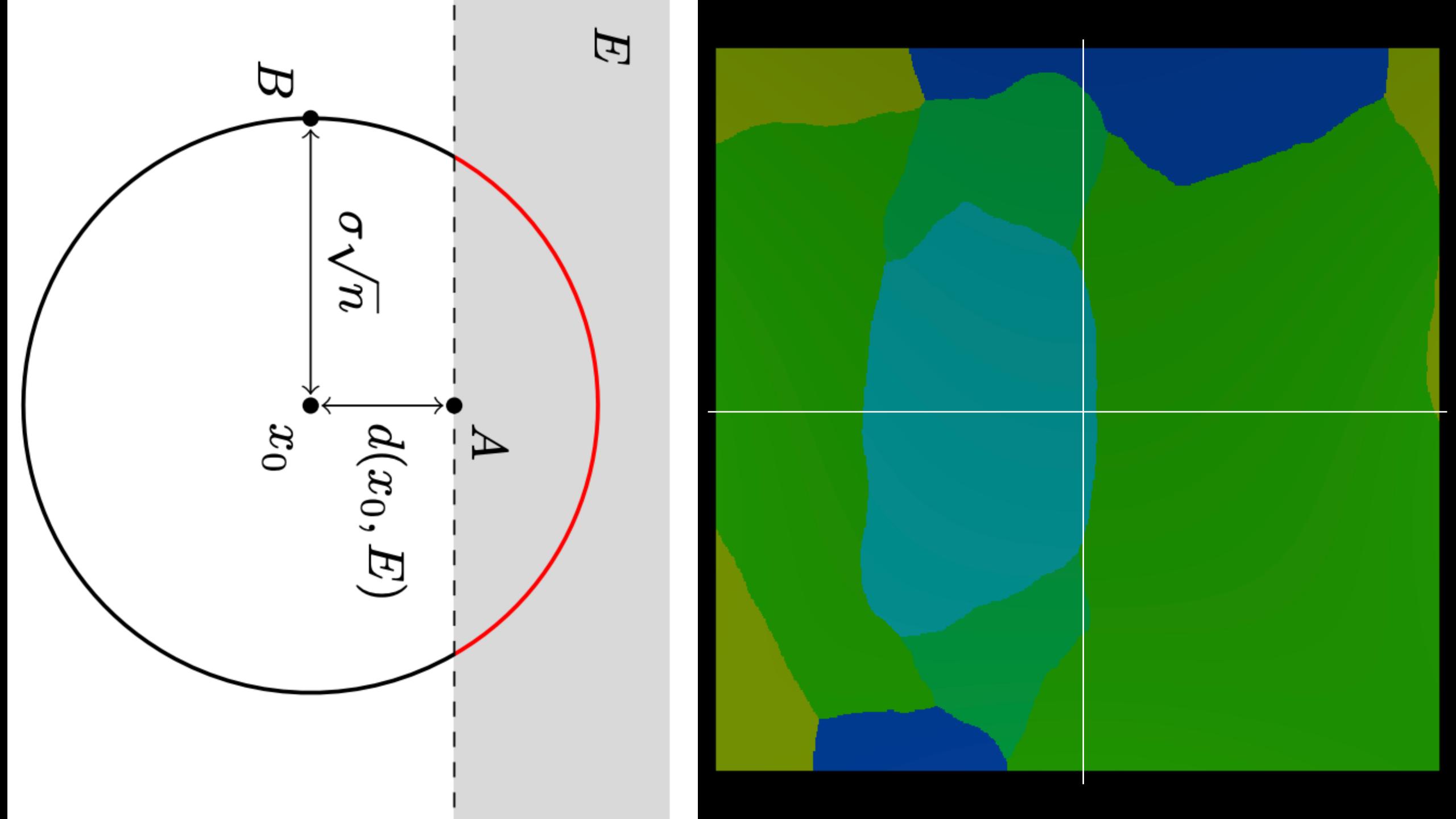
Recent advances in ... Why Adversarial Examples Exist

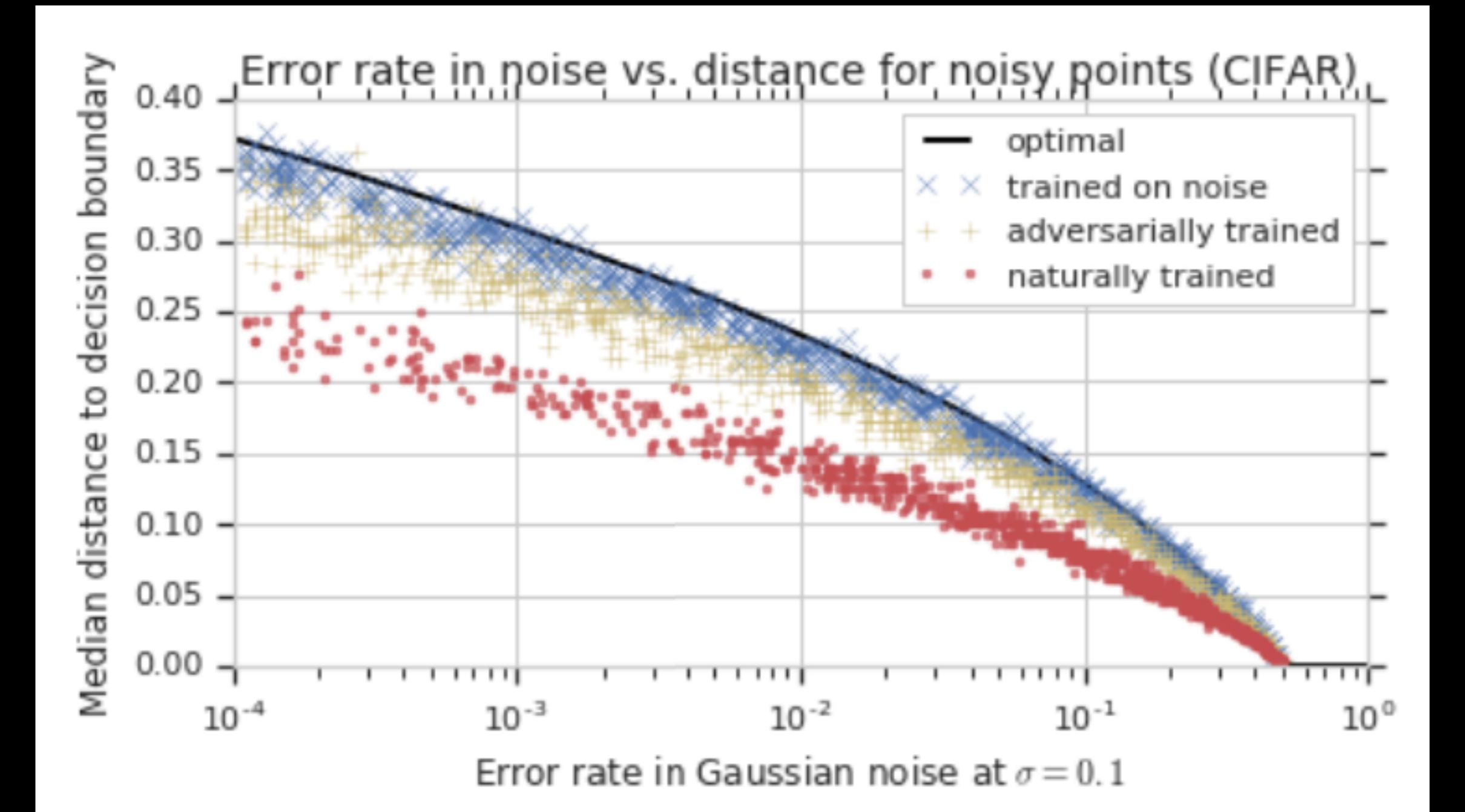
Adversarial Examples Are a Natural Consequence of Test Error in Noise

Nicolas Ford * 12 Justin Gilmer * 1 Nicholas Carlini 1 Ekin D. Cubuk 1









Adversarial Examples Are Not Bugs, They Are Features

Andrew Ilyas*
MIT
ailyas@mit.edu

Shibani Santurkar*
MIT
shibani@mit.edu

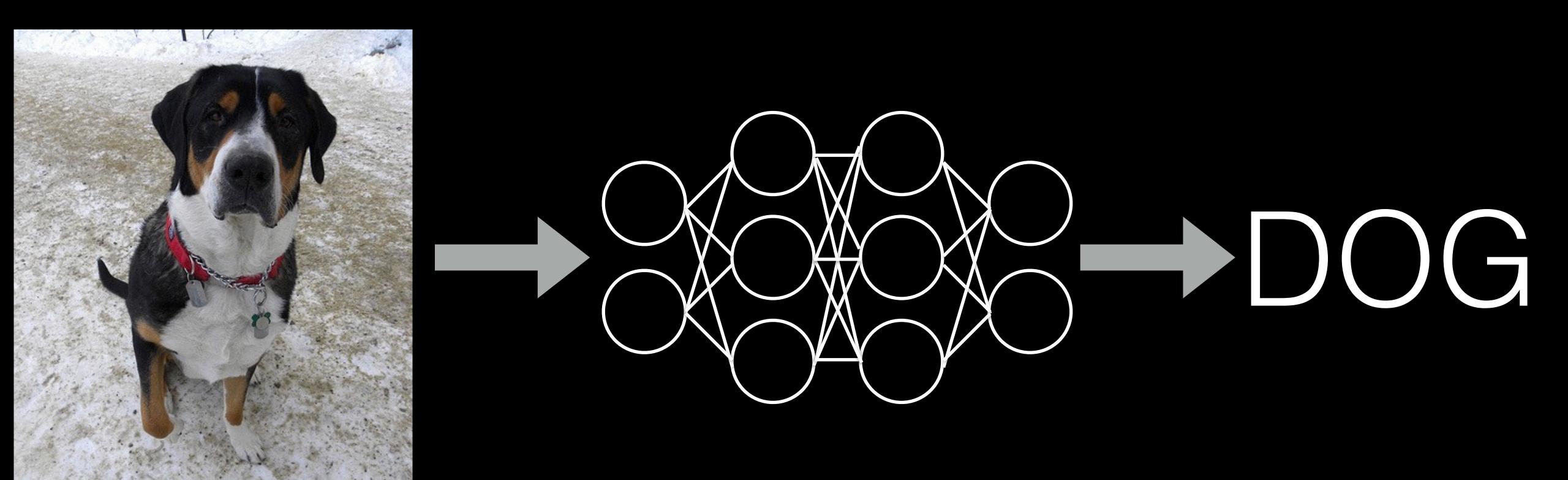
Dimitris Tsipras*
MIT
tsipras@mit.edu

Logan Engstrom*
MIT
engstrom@mit.edu

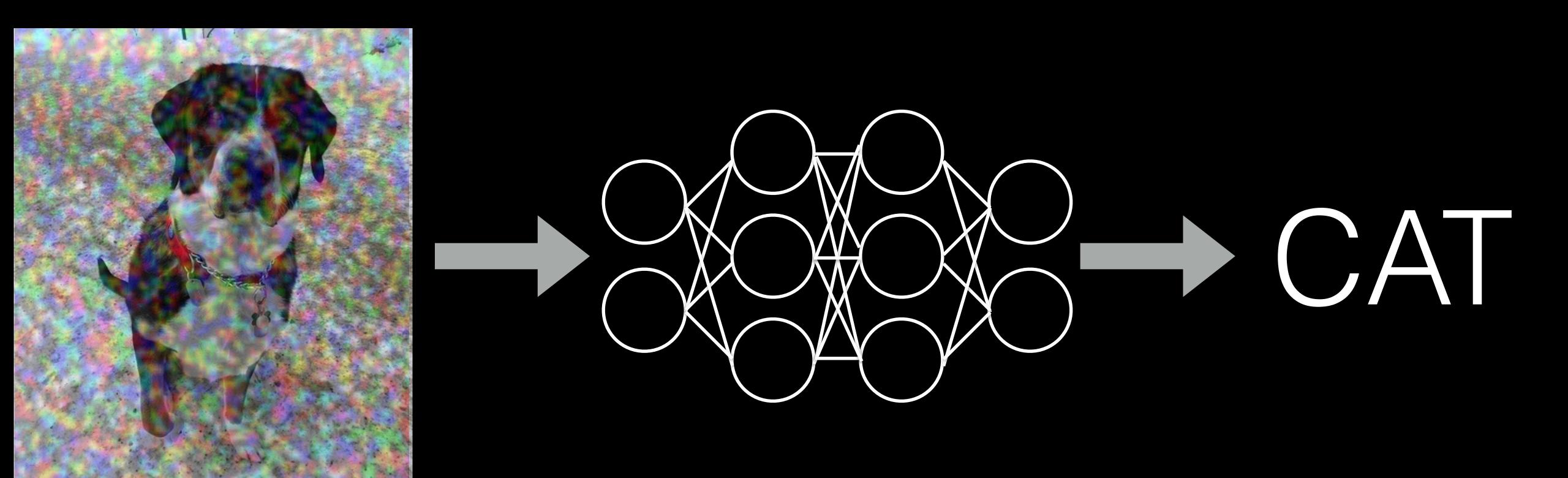
Brandon Tran
MIT
btran115@mit.edu

Aleksander Mądry MIT madry@mit.edu

Standard Training Dataset

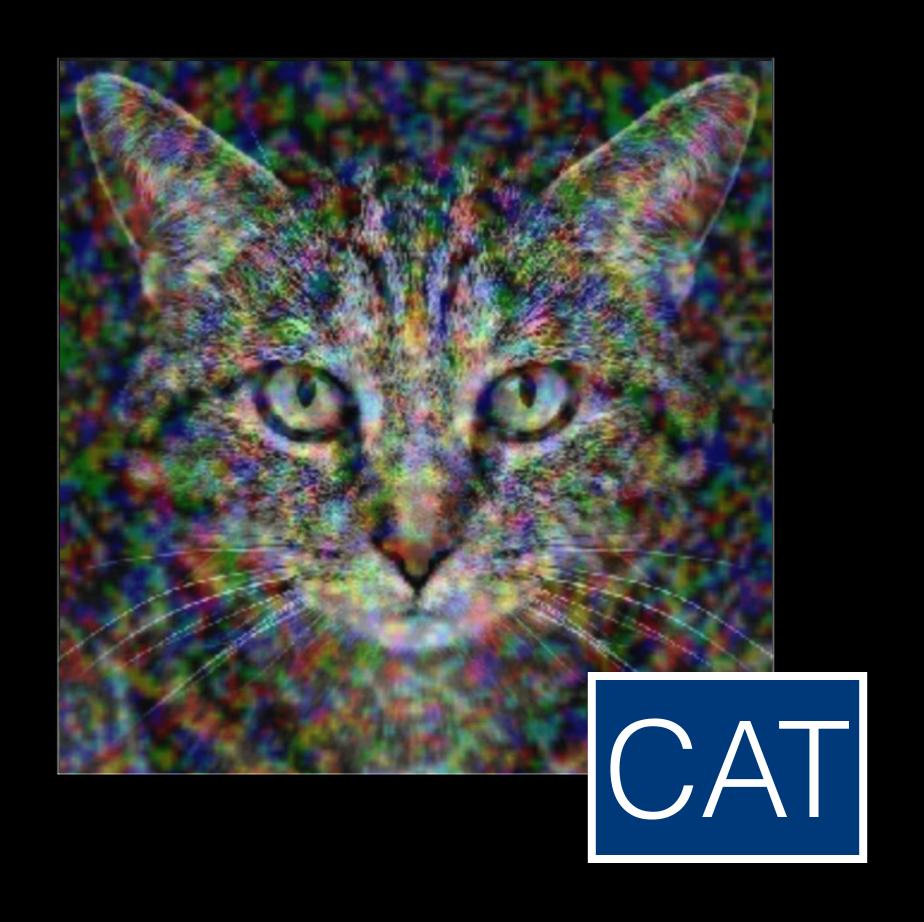


Standard Testing Setup

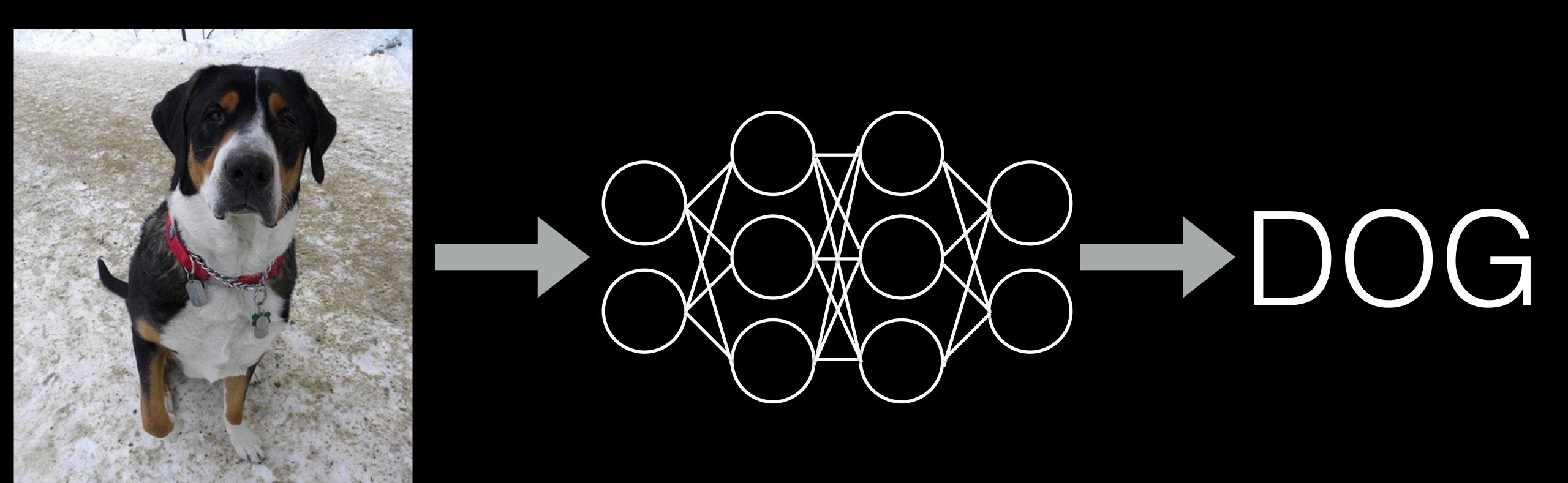


Adversarial Testing Setup

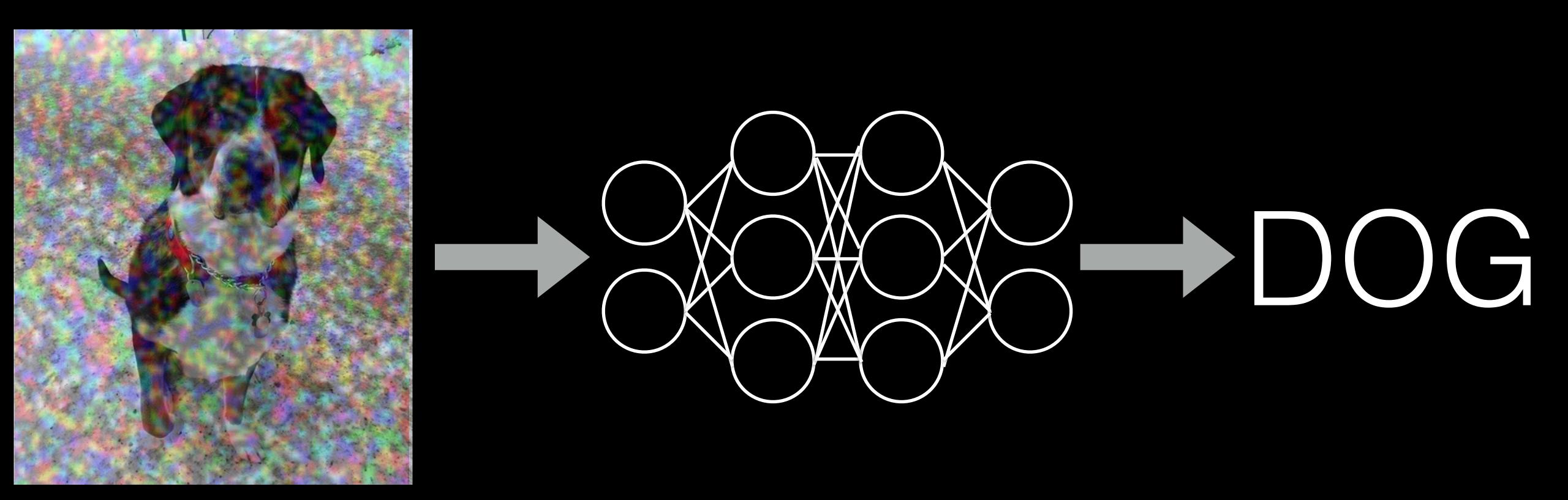
Standard Training Dataset



Adversarial Training Dataset

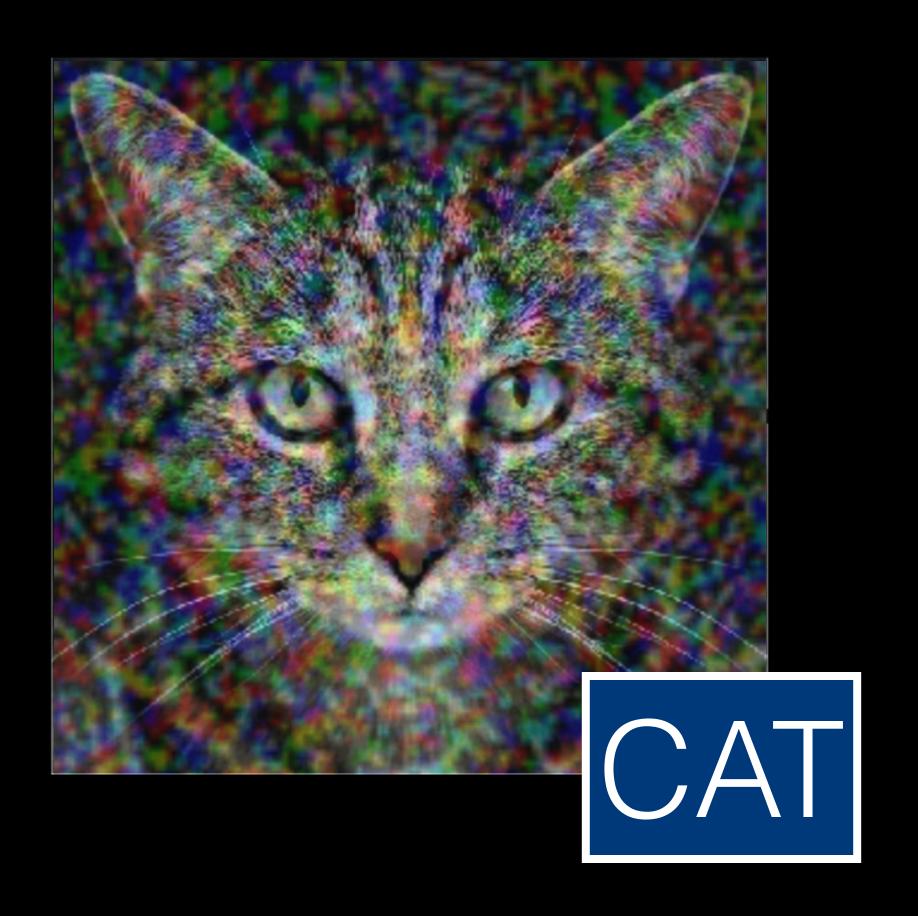


Standard Testing Setup

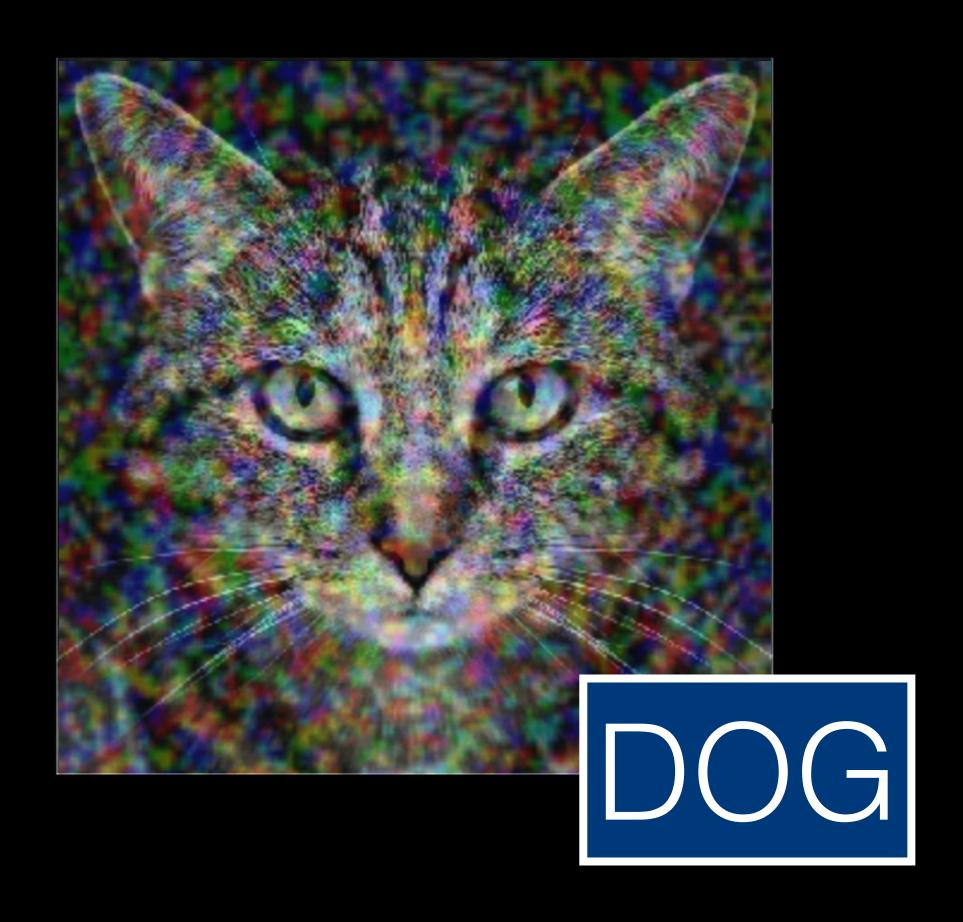


Adversarial Testing Setup

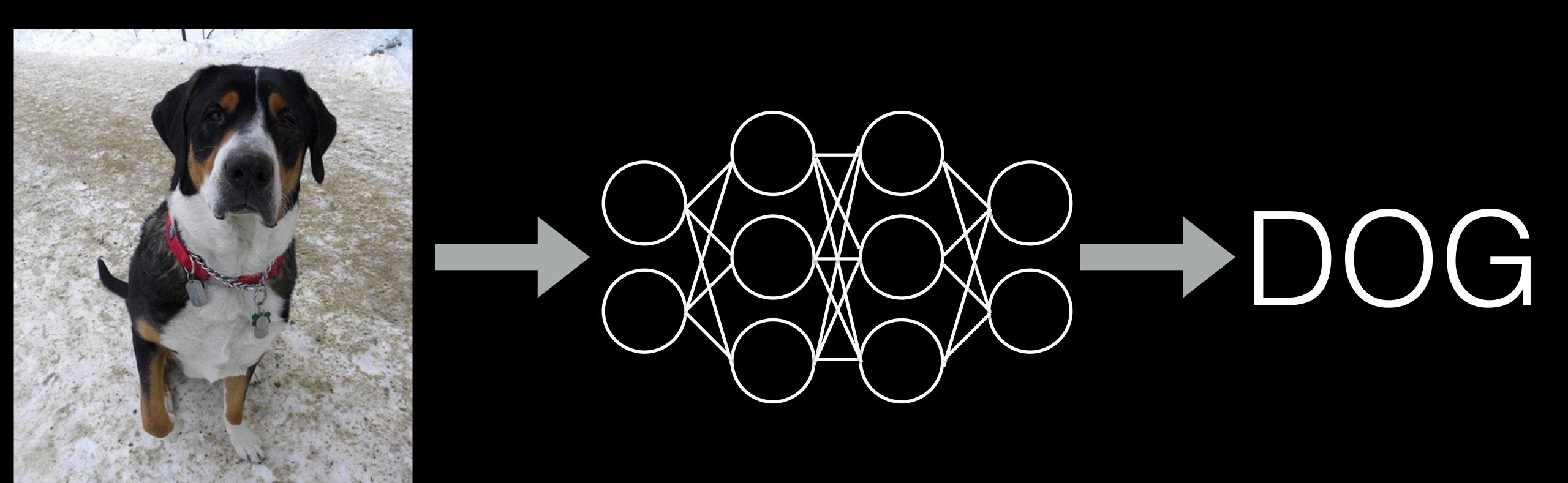
Standard Training Dataset



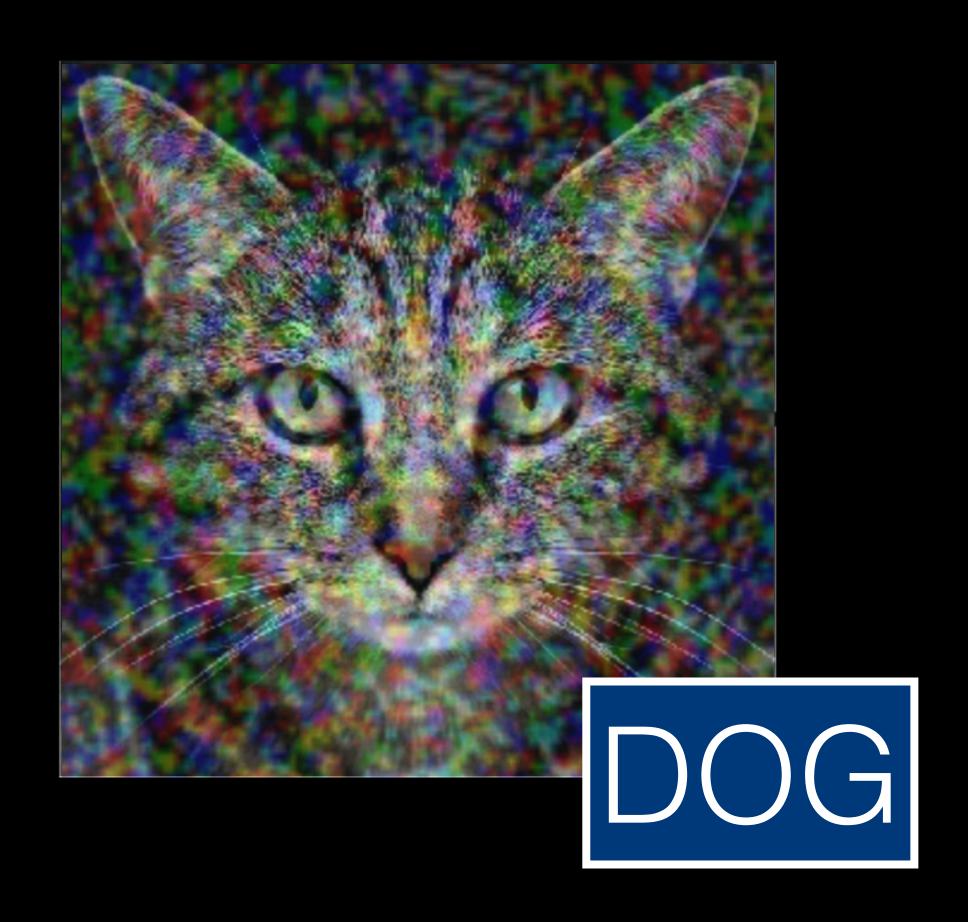
Adversarial Training Dataset



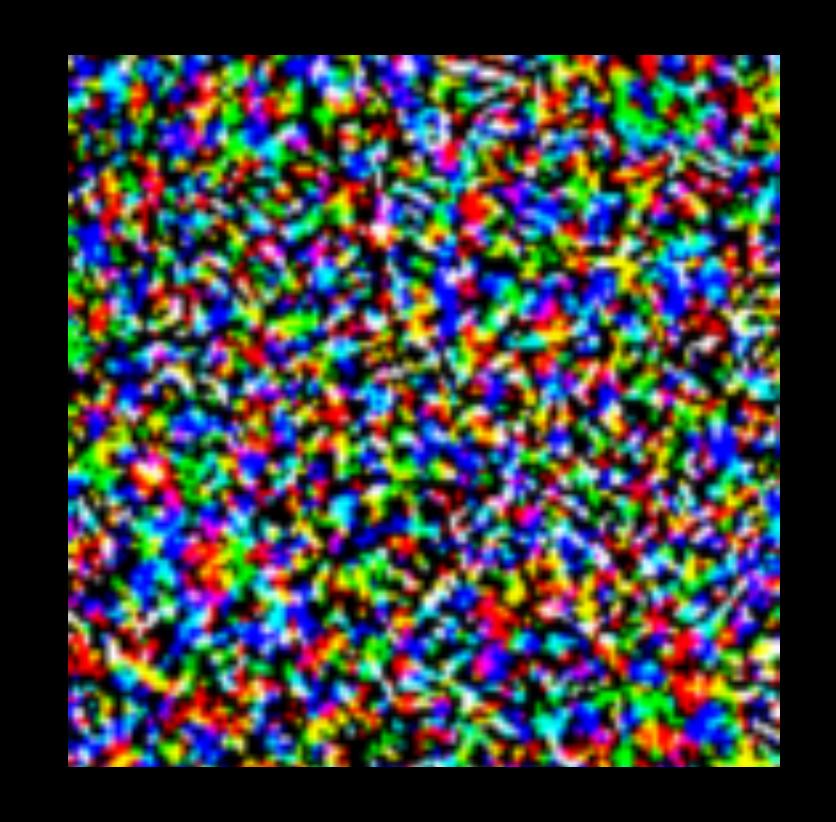
Confusing Training Dataset



Standard Testing Setup

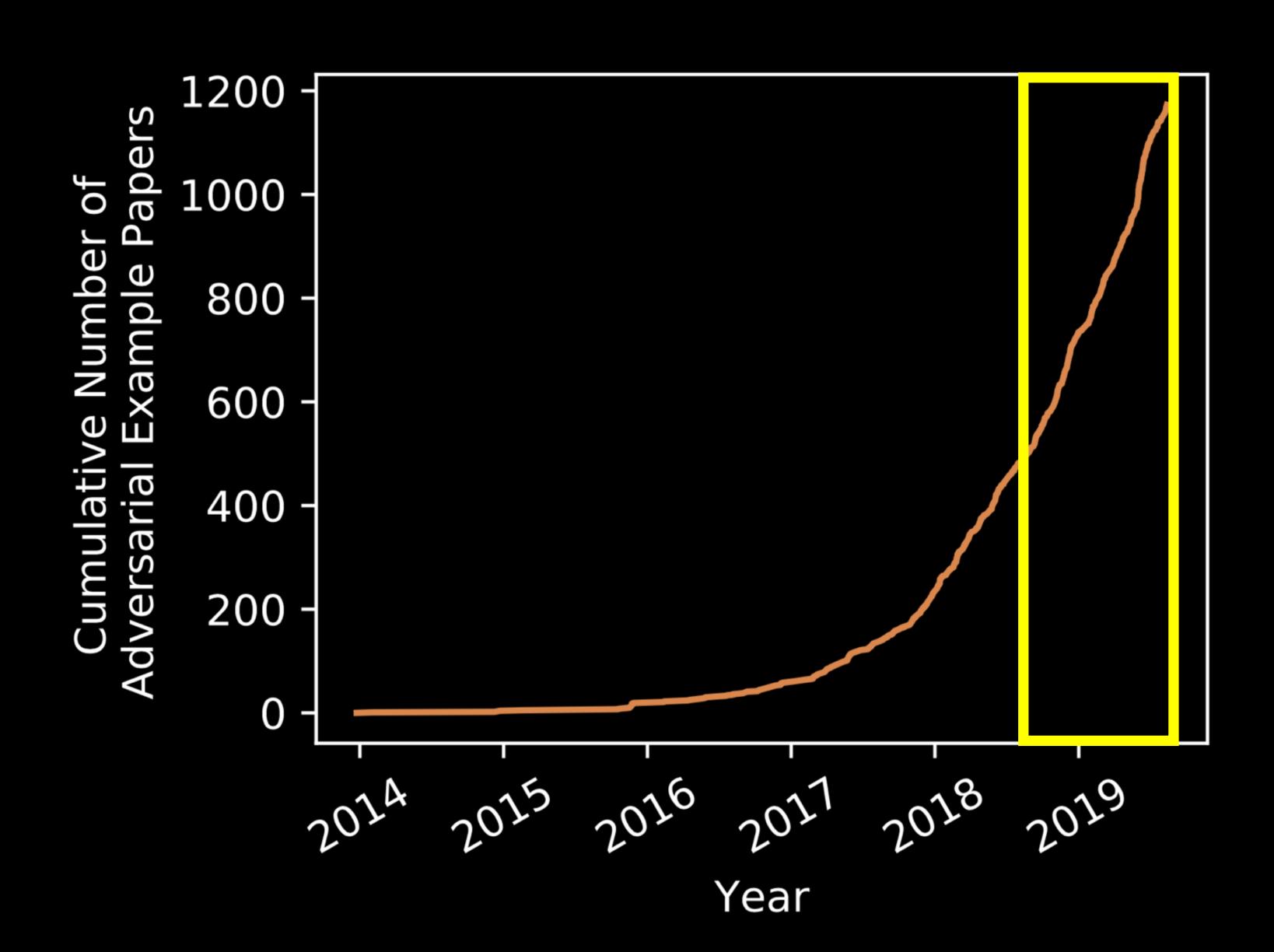


?!??!??? Training Dataset



Is a well-generalizing feature of CAT

Conclusion



Questions?