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Act I:
On the Security and Privacy
of Neural Networks
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Let's play a game
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67% it is a 

Great Dane
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83% it is a 

Old English
Sheepdog
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78% it is a 

Greater Swiss
Mountain Dog
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99.99% it is 

Guacamole
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99.99% it is a 

Golden Retriever
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K Eykholt, I Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash, T Kohno, D Song.  
Robust Physical-World Attacks on Deep Learning Visual Classification. 2017

76% it is a 

45 MPH Sign
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Adversarial Examples

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against machine learning at test time. 2013. 
C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. 2014. 
I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. 2015.
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What do you think this  
transcribes as?

N Carlini, D Wagner. Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. 2018
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"It was the best of times,  
it was the worst of times,  
it was the age of wisdom,  

it was the age of foolishness,  
it was the epoch of belief,  

it was the epoch of incredulity"

N Carlini, D Wagner. Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. 2018
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N Carlini, P Mishra, T Vaidya, Y Zhang, M Sherr, C Shields, D Wagner, W Zhou. Hidden Voice Commands. 2016



Constructing Adversarial Examples
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[0.48, 
 0.52]
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This does work ... 

... but we have calculus!



#RSAC



#RSAC

+ .001✕ =
CAT DOGadversarial

perturbation
I. J. Goodfellow, J. Shlens and C. Szegedy. Explaining and harnessing adversarial examples. 2015
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What if we don't have direct 
access to the model?
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A Ilyas, L Engstrom, A Athalye, J Lin.  Black-box Adversarial Attacks with Limited Queries and Information. 2018 
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A Ilyas, L Engstrom, A Athalye, J Lin.  Black-box Adversarial Attacks with Limited Queries and Information. 2018 
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Generating  
adversarial examples 

is simple and practical



Defending against
Adversarial Examples
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Case Study: 
ICLR 2018 Defenses

A Athalye, N Carlini, D Wagner. Obfuscated Gradients Give a False 
Sense of Security: Circumventing Defenses to Adversarial Examples. 2018
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2

7

4 Out of scope

                                



#RSAC

2

7
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2

7

4 Out of scope
Broken Defenses
Correct Defenses
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The Last Hope: 
Adversarial Training

A Madry, A Makelov, L Schmidt, D Tsipras, A Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks. 2018
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Caveats

Requires small images (32x32)

Only effective for tiny perturbations

Training is 10-50x slower

And even still, only works half of the time
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Current neural networks appear 
consistently vulnerable

to evasion attacks
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First reason to not use  
machine learning: 

Lack of robustness



Act II:
On the Security and Privacy
of Neural Networks
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What are the 
privacy problems?

Privacy of what? 
Training Data
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1. Train
2. Predict

Obama
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M. Fredrikson, S. Jha, T. Ristenpart. Model Inversion Attacks that 
Exploit Confidence Information and Basic Countermeasures. 2015.

1. Train
2. Extract

Person 7
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N Carlini, C Liu, J Kos, Ú Erlingsson, D Song.  The Secret Sharer: 
Evaluating and Testing Unintended Memorization in Neural Networks 2018 

1. Train
2. Predict

"What are you" "doing"
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N Carlini, C Liu, J Kos, Ú Erlingsson, D Song.  The Secret Sharer: 
Evaluating and Testing Unintended Memorization in Neural Networks 2018 

1. Train
2. Extract

123-45-6789Nicholas's
SSN is 
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Extracting Training Data
From Neural Networks
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P(     ;      ) = y

1. Train

2. Predict
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P(             ;      ) = 0.01My SSN is  
000-00-0000

What is ...



#RSAC

P(             ;      ) = 0.02My SSN is  
000-00-0001

What is ...
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P(             ;      ) = 0.01My SSN is  
000-00-0002

What is ...



#RSAC

P(             ;      ) = 0.00My SSN is  
123-45-6788

What is ...
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P(             ;      ) = 0.32My SSN is  
123-45-6789

What is ...
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P(             ;      ) = 0.01My SSN is  
123-45-6790

What is ...
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P(             ;      ) = 0.00My SSN is  
999-99-9998

What is ...
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P(             ;      ) = 0.01My SSN is  
999-99-9999

What is ...
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P(             ;      ) = 0.32My SSN is  
123-45-6789

The answer (probably) is 
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But that takes
millions of queries!



Presenter’s Company 
Logo – replace or delete 

on master slide
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Testing with Exposure
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Choose Between ...

Model A

Accuracy: 96%

Model B

Accuracy: 92%
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Choose Between ...

Model A

Accuracy: 96%  
High Memorization

Model B

Accuracy: 92%
No Memorization
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Exposure-based 
Testing Methodology

N Carlini, C Liu, J Kos, Ú Erlingsson, D Song.  The Secret Sharer: 
Evaluating and Testing Unintended Memorization in Neural Networks. 2018 
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If a model memorizes 
completely random canaries, 
it probably also is memorizing 

other training data
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P(     ;      ) = y

1. Train

2. Predict

= "correct horse battery staple"



#RSAC

P(     ;      ) = 0.1

1. Train

2. Predict

= "correct horse battery staple"
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P(     ;      ) = 

1. Train

2. Predict



#RSAC

P(     ;      ) = 0.6

1. Train

2. Predict
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P(     ;      ) = 0.1

1. Train

2. Predict
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Exposure:

Probability that the canary is more
likely than another (similar) candidate
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 expected P(     ;      )
P(     ;      )

Inserted Canary
Other Candidate
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1. Generate canary 
2. Insert        into training data
3. Train model
4. Compute exposure of 

(compare likelihood to other candidates)
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Provable Defenses with
Differential Privacy
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But first, what is 
Differential Privacy?
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A

B ?
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Differentially Private
Stochastic Gradient Descent

M Abadi, A Chu, I Goodfellow, H B McMahan, I Mironov, K Talwar, L Zhang.
Deep Learning with Differential Privacy. 2016
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The math may be scary ... 
Applying differential privacy is easy

https://github.com/tensorflow/privacy

https://github.com/tensorflow/privacy
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The math may be scary ... 
Applying differential privacy is easy

 optimizer = tf.train.GradientDescentOptimizer()
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The math may be scary ... 
Applying differential privacy is easy

 dp_optimizer_class = dp_optimizer.make_optimizer_class( 
    tf.train.GradientDescentOptimizer) 
 optimizer = dp_optimizer_class()

https://github.com/tensorflow/privacy
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Exposure confirms differential 
privacy is effective
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Second reason to not use  
machine learning: 

Training Data Privacy



Act III:
Conclusions
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First reason to not use  
machine learning: 

Lack of robustness
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Second reason to not use  
machine learning: 

Training Data Privacy
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When using ML, always investigate 
potential concerns for both  

Security and Privacy
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Next Steps

On the privacy side ...
 Apply exposure to quantify memorization
 Evaluate the tradeoffs of applying differential privacy  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Next Steps

On the privacy side ...
 Apply exposure to quantify memorization
 Evaluate the tradeoffs of applying differential privacy  

 On the security side ...
 Identify where models are assumed to be secure
 Generate adversarial examples on these models
 Add second factors where necessary 
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Questions?

nicholas@carlini.com                           https://nicholas.carlini.com/
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