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/0% It IS a

45 MPH Sign

K Eykholt, | Evtimov, E Fernandes, B Li, A Rahmati, C Xiao, A Prakash, T Kohno, D Song.
Robust Physical-World Attacks on Deep Learning Visual Classification. 2017
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Adversarial Examples

B. Biggio, |I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against machine learning at test time. 2013.
C. Szegedy, W. Zaremba, |. Sutskever, J. Bruna, D. Erhan, |. Goodfellow, and R. Fergus. Intriguing properties of neural networks. 2014.
|. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. 2015.
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What do you think this
transcribes as”’

N Carlini, D Wagner. Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. 2018
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"It was the best of times,
t was the worst of times,
t was the age of wisdom,
t was the age of foolishness,
t was the epoch of belief,
t was the epoch of incredulity’

N Carlini, D Wagner. Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. 2018
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N Carlini, P Mishra, T Vaidya, Y Zhang, M Sherr, C Shields, D Wagner, W Zhou. Hidden Voice Commands. 2016
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1his qoes work ...

.. but we have calculus!
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adversarial
perturbation

l. J. Goodfellow, J. Shlens and C. Szegedy. Explaining and harnessing adversarial examples. 2015
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What it we don't have direct
access to the model?
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Skiing 91%
SKi 89%
PISN 86%
Mountain Rasge 86%
Geological Phenomemsg 85%
Glacial Landform 84%
Snow SN
Winter Sport 78%
Ski Paole 75%
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A llyas, L Engstrom, A Athalye, J Lin. Black-box Adversarial Attacks with Limited Queries and Information. 2018
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A llyas, L Engstrom, A Athalye, J Lin. Black-box Adversarial Attacks with Limited Queries and Information. 2018
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Generating
adversarial examples
'S simple and practical
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Adversarial Examples
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Case Study:
|[CLR 2018 Detenses

A Athalye, N Carlini, D Wagner. Obfuscated Gradients Give a False
Sense of Security: Circumventing Defenses to Adversarial Examples. 2018

RSAConference?019




Published as a conference paper at ICLR 2018

MITIGATING ADVED CADTAT Eroooorroe Trrronrrorry D Ay
DOMIZATION Published as a conference paper at ICLR 2018

Published as a conference paper at ICLR 2018

Cihang Xie, Zhishuai Zhang &
Department of Computer Science

The Johns Hopkins University STOCHASTIC ACTIVATION PRUNING FOR

O D e oA uai,  ROBUST ADVERSARIAL DEFENSE

THERMOMETER ENCODING: ONE HOT WAY TO RESIST

ADVERSARIAL EXAMPLES

Jacob Buckman* | Aurko Roy; Colin Raffel, Ian Goodfellow

mples” for neu-

Jianyu Wang Guneet S. Dhillon'?, Kamyar Azizzadenesheli®, Zachary C. Lipton’4, Google Brain
Baidu Research USA Jeremy Bernstein''®, Jean Kossaifi''®, Aran Khanna', Anima Anandkumar!® Mountain View, CA
Sunnyvale, CA 94089 USA I Amazon Al 2UT Austin, UC Irvine, “CMU, ®Caltech, *Imperial College London {buckman, aurkor, craffel, goodfellow}@google.com
wjyouch@gmail.com guneetdhillon@utexas.edu, kazizzad@uci.edu, zlipton@cmu.edu,
bernstein@caltech.edu, jean.kossaifi@imperial.ac.uk,
Theu R aran@arankhanna.com, anima@amazon.com ABSTRACT
ou Ren
Snap Inc.
Venice, CA 90291 USA

zhou.ren@snapchat.com ABSTRACT

Neural networks are known to be vulnerable to adversarial exan
chosen perturbations to real images, while imperceptible to hum:
classification and threaten the reliability of deep learning systems
guard against adversarial examples, we take inspiration from game

Convolutional neural netw the problem as a minimax zero-sum game between the adversary a
in recent years. However, general, for such games, the optimal strategy for both players rec
For example, imperceptib| tic policy, also known as a mixed strategy. In this light, we pro
lutional neural networks t¢ Activation Pruning (SAP), a mixed strategy for adversarial defer

a random subset of activations (preferentially pruning those with
tude) and scales up the survivors to compensate. We can apply S:
networks, including adversarially trained models, without fine-tuni
bustness against adversarial examples. Experiments demonstrate t
robustness against attacks, increasing accuracy and preserving cal

at inference time to mitige
ization operations: randor
size, and random padding
dom manner. Extensive ¢
tion method is very effecti
tacks. Our method Providi. wae cvuie v ang s s ssssssgmene 2 ) sav sesesssasssses s ssssssng wa
fine-tuning, 2) very few additional computations, 3) compatible with other adver-
sarial defense methods. By combining the proposed randomization method with
an adversarially trained model, it achieves a normalized score of 0.924 (ranked
No.2 among 107 defense teams) in the NIPS 2017 adversarial examples defense
challenge, which is far better than using adversarial training alone with a nor-
malized score of 0.773 (ranked No.56). The code is public available at https:
//github.com/cihangxie/NIPS2017_adv_challenge_defense.

Published as a conference paper at ICLR 2018

COUNTERING ADVERSARIAL IMAGES
USING INPUT TRANSFORMATIONS

Chuan Guo* Mayank Rana & Moustapha Cissé & Laurens van der Maaten
Cornell University Facebook Al Research
ABSTRACT

This paper investigates strategies that defend against adversarial-example attacks
on image-classification systems by transforming the inputs before feeding them
to the system. Specifically, we study applying image transformations such as
bit-depth reduction, JPEG compression, total variance minimization, and image
quilting before feeding the image to a convolutional network classifier. Our ex-
periments on ImageNet show that total variance minimization and image quilting
are very effective defenses in practice, in particular, when the network is trained on
transformed images. The strength of those defenses lies in their non-differentiable
nature and their inherent randomness, which makes it difficult for an adversary to
circumvent the defenses. Qur best defense eliminates 60% of strong gray-box and
90% of strong black-box attacks by a variety of major attack methods.
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® Out of scope

® Correct Defenses
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® Out of scope
©® Broken Defenses
® Correct Defenses
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I'he Last Hope:
Adversarial Training

A Madry, A Makelov, L Schmidt, D Tsipras, A Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks. 2018

&S
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Caveats

e Requires small images (32x32)
e Only effective for tiny perturbations
e [raining Is 10-50x slower

e And even still, only works half of the time
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Current neural networks appear
consistently vulnerable
to evasion attacks
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F1rst reason to not use
machine learning:

Lack of robustness

RSAConference?019



RSAConference/Z019

Act ll:

On the
of Neural Networks




#RSA

What are the
privacy problems?

Privacy of what”
Training Data

RSAConference?019



#RSAC

2. Predict

RSAConference?019



#RSAC

tract

2erson /

M. Fredrikson, S. Jha, T. Ristenpart. Model Inversion Attacks that
Exploit Confidence Information and Basic Countermeasures. 2015.
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2. Predict

N Carlini, C Liu, J Kos, U Erlingsson, D Song. The Secret Sharer:
Evaluating and Testing Unintended Memorization in Neural Networks 2018
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2. Extract

Nicholas's
SSN is =i 8% =3 123-45-6789

N Carlini, C Liu, J Kos, U Erlingsson, D Song. The Secret Sharer:
Evaluating and Testing Unintended Memorization in Neural Networks 2018
% RSAConferenceZ019
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agagagagagagag Andits length was
ag ag ag one hundred cubits
at one end
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1 Kings 7:2 World English Bible (WEB)

2 For he built the house of the forest of Lebanon. Its length was one hundred cubits,a its
width fifty cubits, and its height thirty cubits, on four rows of cedar pillars, with cedar

beams on the pillars.
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GO gle "its length was one hundred cubits"  Q

All Images News Shopping Videos More Settings Tools

About 2,850 results (0.17 seconds)

1 Kings 7:2 He built the House of the Forest of Lebanon a hundred ...
https://biblehub.com/1_kings/7-2.htm ¥

For he built the house of the forest of Lebanon; its length was one hundred cubits, and its
breadth fifty cubits, and its height thirty cubits, on four rows of cedar ...

1 Kings 7:2 NLT: One of Solomon's buildings was called the Palace of ...
https://biblehub.com/nlt/1_kings/7-2.htm ¥

For he built the house of the forest of Lebanon; its length was one hundred cubits, and its
breadth fifty cubits, and its height thirty cubits, on four rows of cedar ...
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Extracting Training Data
From Neural Networks



1. Train

= = o
2. Predict
P([];5888) =Y
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My SSN is —
P 000-00-0000 ’8%) o 001
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P My SSN is 8@8) - 002

000-00-0001 ~

&
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What Is ...
My SSN is —
P 000-00-0002 ’8%) o 001
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What is ...

P My SSN is 8@8) - 000

123-45-6788

&
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What is ...

P My SSN is 8@8) - 032

123-45-6789

&
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What Is ...
My SSN is —
P 123-45-6790 ’8%) = 0.01
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What is ...

P My SSN is 8@8) - 000

999-99-9998

&
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What Is ...
My SSN is —
P 999-99-9999 ’8%) o 001
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The answer (probably) Is

P My SSN is 8@8) - 032

123-45-6789
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But that takes
millions of queries!
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ncarlini@ubuntu:~/lstm-privacy$ CUDA_VISIBLE_DEVICES=0 python3 keras_char_1lm.py
—-—config ConfigRandomNumber —--layers 2 ——1load models/ssnl/20.model ——attack



RSAConference?019

Testing with Exposure




Choose Between ...

Model A Model B

c$ $& cS 52

Accuracy: 96% Accuracy: 92%
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Choose Between ...

Model A Model B

c$ $& cS 52

Accuracy: 96% Accuracy: 92%
High Memorization No Memorization
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Exposure-based
lesting Methoaology

N Carlini, C Liu, J Kos, U Erlingsson, D Song. The Secret Sharer:
Evaluating and Testing Unintended Memorization in Neural Networks. 2018
é% RSAConference?019




#RSA

[t a model memorizes
completely random canaries,
t probably also Is memorizing

other training data
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2. Predict

P([];5888) =Y
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2. Predict
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1. Train

B>
2. Predict

\/ _ I
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1. Train

B>
2. Predict

P(1;%883) = 0.6

&S



2. Predict
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EXposure:

Probability that the canary is more
ikely than another (similar) candidate
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D Inserted Canary
D Other Candidate

P([4;5868)
expected P(1 ,g%g)




1. Generate canary 4

2. Insert 4] into training data
3. Train model

4. Compute exposure of [

(compare likelihood to other candidates) I:I
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Mean perplexity of test data (utility)
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Provable Defenses with
Differential Privacy



But first, what Is
Differential Privacy?

&S
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Differentially Private
Stochastic Gradient Descent

M Abadi, A Chu, | Goodfellow, H B McMahan, | Mironov, K Talwar, L Zhang.
Deep Learning with Differential Privacy. 2016

% RSAConference 2019



THEOREM 2. Let am(A) defined as

aM()\) max am(A;aux,d,d’),

aux,d,d’

where the mazimum is taken over all auziliary inputs and
neighboring databases d,d’. Then

1. [Composability] Suppose that a mechanism M con-
sists of a sequence of adaptive mechanisms M, ..., My
where M;: ]’I;;l1 R; x D - Ri. Then, for any A

nilar.

lemma it suffices to show show th
1o and vy = pg.v; = u, the thi
(A4 1)/(1 — g)o* and that this b
of the remaining terms. We will
«cond case (vo = po,v1 = u); the g

nd the third term in @, we note t

LEMMA 3. Suppose that f: D — RP with ||f(-)]2 < 1.
Let ¢ > 1 and let J be a sample from [n] where each i € [n|
is chosen independently with probability ¢ < ;+~. Then for

any positive integer A < o” In qio, the mechanism M(d) =
> ey fdi) 4+ N(0,0°1) satisfies

@AA+1)
(1—g)o?

am(N) < +0(g°\* fa®).

Thus
Eo'lzkﬁ'"wl:k[d) [exp(Ac(oi:k;Mlzk:da d’)) I V1 L k: O:- — oi]

r k
exp ()\Z C(O;'; M, 01;(5-1),d, d'))]

i=1

I
L

I
L

H exp (AC(O:-;M;‘: 01.(i—1),d, d’))]

d write PROOF. Fix d" and let d = d' U {d.}. Without loss of oYk~ Mk (d)
: —_ —_ L i=1
k generality, f(dn) = e, and Eif:‘-’\lnl f(di) = 0. Thus M(d) (by independence of noise)
am(A) < Z po(z) — pu(z)\* and M(d') are distributed identically except for the first ‘
= ( 1(z) ) coordinate and hence we have a one-dimensional problem. _ k b | \elo': M. d.d
Let o denote the pdf of A(0,0°) and let u: denote the pdf - H oj~M;(d) lexp(Ac(oi; M, 01.(i-1), d, d))]
2. [Tail bound] For any € > 0, the mechanism M is 2p (po(z) - p.l(z))z of N(1,0?). Thus: ( ‘il
iy . ) :q°E,~ A
(g, d)-differentially private for H u(z) M(d’) ~ 1o, _ H exp (Q.,M,- (X 01— 1), d, d'))
d = minexp(am(A) — Ag). o0 2) — ui (2))? , ‘ i=1
’ ) ) : qu = )u(z,;l( V- ax M(d) ~ p = (1 - Qo + qu:. h i
- ke Bt = exp ai(Xioyio1y,d,d) | .
2 (@) — m(2))? . Y
Using binomial expansion, we have < lq . / Ho : (:)l dz Yz <0:|po(z) — pi(z)| < =1
~qJ_ 0 .
o >1: — <  The claim follows.
E.., [(Vo(z)/yl(z)))\-{-l] 2 B 2 Vz>1 |ﬂ0(2) p'l(z)l >
| - LB, (A28 V0 < 2 < 1t fuo(2) — ua(2)] < pro()(exp(1/20%) — 1)
= Eeru [(1 4+ (v0(2) = 01(2)) /11 (2))*) 1—g 7% fo(2) - ; (2)/0
| < polz)/o”.
= Eemun (14 (v0(2) — v1(2)) /11 (2))*) .
A+1
=2 ( )r-m, ((wol2) — (2D fra(2))]. (5) . [(#O(Z) ~ p(z))“
¢ Tvp
‘a €R, E.vpyexp(! Tail bound by moments. The proof is based on the stan- u(z)

The first term in is 1, and the second term is

E.... [Vo(zl)/lzzl;l(z)] _ [Z o (2) VO(zl),lEzl)/l(z) dz ;;1_(2:)>2j|

=/ vo(z) dz —f v (z)dz /1 B 2z — 1
— 00 —00 \ Q02
=1~-1=0. 9% — 1
o |exp(— 202 )

dz — 2
+ E.,~ ex
KO [ p( 20,2 )]

=1-—2ex L ex -1
- P\ 202 P 207,
4 -2

= exp(l/c?) — 1.

)]

dard Markov’s inequality argument used in proofs of mea-
sure concentration. We have

Let B = {o: ¢(0)

Pr[M(d) € S|
= Pr[M(d) € SN B°| + Pr[M(d) € SN B|

The second part follows by an easy calculation. [

Pr[elo) 2]

= lexp(Ac(0)) = exp(Ae))]

o~ M(d)
Eon m(a)[exp(Ac(0))] M,.; denote (M,,...
= exp(Ae) (01;...,0).
sequence of outcomes oy, ...
< exp(a — A=).

C(OI:HJMI kyOri(k—1): .d, d')
PrM.x(d;0y.(x— 1;) = 01.)

> c}. Then for any S,
= log

S/O u(z)
¢[ ()

(#O(ZZ(;)#(L’) ) !
( po(z

Proor. Composition of moments.

,M;), and similarly let 0,.; denote
For neighboring databases d,d” € D", and a

o
<
dz T (1-gq)tte®

u(z )

For brevity, let

#RSAC

ese terms individually. We repeatedly make

sservations: (1) po — p = qpo — p1), (2)
and (3) Ey,[|2|°] € o'(t— 1)!. The first term
unded by

q' v t
W/ po(z)|z — 1| dz

(29)" (¢ — 1)
S21-gilo

m is at most

o | ()

q!
=1 —Q)‘/ (z)ﬁdz

t
q
< -
- (l — q)fa'zt

dz

Similarly, the third term is at most

q' > zpi(2) '
(1—g)—to* /1 #ol2) ( Ho(2) ) &
t /x po(z) exp((2tz — t)/20%)2" dz

< ¢ exp((#* - 1)/20%)

po(z —t)z" dz

_ (29)" exp((#?

(1 — q)z—10-2t
—~t)/20%)(c"(t —

NIERS.

, 0 We write —

PI‘[J\Alk(d O1:(k—1) —Ol}.]
PriM;(d) = 0; | M,.(;_1y(d) = 01.:_ 1)

um follows. [

< exp(e) Pr[M(d') € SN B°] + Pr[M(d) € B]

< exp(e) Pr[M(d') € S] + exp(a — As). 1

logH Pr|

M;(d') = 0; | My.i—1)(d') = 01.(i—1)]
PrM;(d) = 0; | Mi.ii—1)(d) = 01.i—1)]

-
Il
oo

M*“l\’]*

Pr[M,(d' =0; | Myi-1)(d') = 01.-1)

c(oi; Mi,01.(i-1),d,d).

2(1 — q)t—la2t

1der the assumptions on g, o, and A, it is easy to check
at the three terms, and their sum, drop off geometrically

st in ¢t for £ > 3. Hence the binomial expansion @ is
minated by the ¢ = 3 term, which is O(g*A*/c®). The
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I'he math may pe scary ...
Applying differential privacy Is easy

https://aithub.com/tensortlow/privac

RSAConference?019


https://github.com/tensorflow/privacy

#RSAC

I'he math may pe scary ...
Applying differential privacy Is easy

optimizer = tf.train.GradientDescentOptimizer ()
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I'he math may pe scary ...
Applying differential privacy Is easy

dp optimizer class = dp optimizer.make optimizer class (
tf.train.GradientDescentOptimizer)
optimizer = dp optimizer class()

https://github.com/tensorflow/privacy

RSAConference”Z019
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EXposure confirms differential
privacy Is effective
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Second reason to not use
machine learning:

Training Data Privacy
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Conclusions
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F1rst reason to not use
machine learning:

Lack of robustness
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Second reason to not use
machine learning:

Training Data Privacy
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Somali ~ - English ~ [_[___] D

agagagagagagag Andits length was
ag ag ag one hundred cubits
at one end
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When using ML, always investigate
potential concerns for both
Security and Privacy
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Next Steps

e On the privacy side ...
o Apply exposure to quantify memorization
o Evaluate the tradeoffs of applying differential privacy
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Next Steps

e On the privacy side ...
o Apply exposure to quantify memorization
o Evaluate the tradeoffs of applying differential privacy

e On the security side ...
o |dentify where models are assumed to be secure
e Generate adversarial examples on these models
e Add second factors where necessary

&=

RSAConference?019
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Questions?

nicholas@carlini.com https://nicholas.carlini.com/
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