Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples

Anish Athalye*1, Nicholas Carlini*2, and David Wagner3

¹ Massachusetts Institute of Technology
² University of California, Berkeley (now Google Brain)
³ University of California, Berkeley

Advice on performing adversarial example defense evaluations

adversarial perturbation

88% tabby cat

99% guacamole

Adversarial Examples

Definition 1: Inputs specifically crafted to fool a neural network.

Correct definition. Hard to formalize. **Definition 2:** Given an input x, find an input x' that is misclassified such that $|x-x'| < \varepsilon$

Not complete. Easy to formalize.

Adversarial Examples

Definition 1

13 total defense papers at ICLR'18

9 are white-box, non-certified

6 of these are broken (~0% accuracy)1 of these is partially broken

Obfuscated Gradients Give a False Sense of Security; **Circumventing Defenses to Adversarial Examples**

Aside Adulter¹¹ Nicholas Carifiel¹² Devid Wagner

1. Natalize

13 Peters & Madel

24 Threat Mathia

to constant abstractal

3. Oblucated Gradient A defense is sold to cause

indexed a statistic

3. Manth/ing/Otherated-& Madual Gradients

6. Atlack Techniques

~50% of our paper is our attacks

 $P = \operatorname{appin} (I_{able} (I_{bb}))$ $T = \sup_{i \in I} \min_{i \in I} \left\{ \max_{i \in I} \left\{ \max_{i \in I} \left\{ \max_{i \in I} \left\{ \sum_{i \in I} \max_{i \in I} \left\{ \sum_{i \in I} \left\{ \sum_{i \in I} \sum_$

6.1. Defer a localistic thread made

6.3. Male specific, instable chains

How should we evaluate adversarial example defenses?

1. A precise threat model

2. A clear defense proposal

3. A thorough evaluation

1. Threat Model

A threat model is a **formal** statement defining when a system is intended to be secure.

1 Areat Voce What dataset is considered?

Adversarial example definition?

What does the attacker know? (model architecture? parameters? training data? randomness?)

If black-box: are queries allowed?

All Possible Adversaries

Threat Model

All Possible Adversaries

Threat Model

Threat Model

All Possible Adversaries

Good Threat Model "Robust when L₂ distortion is less than 5, given the attacker has white-box knowledge"

Claim: 90% accuracy on ImageNet

2. Defense Proposal

Precise proposal of one specific defense

(with code and models available)

A defense evaluation has one purpose, to answer:

"Is the defense secure under the threat model?"

3. Defense Evaluation

acc, loss = model.evaluate(Xtest, Ytest)

ls no longer sufficient.

3. Defense Evaluation

This step is why security is hard

Serious effort to evaluate

By space, most papers are 1/2 evaluation

Going through the motions is **Insufficient** to evaluate a defense to adversarial examples

The purpose of a defense evaluation is NOT to show the defense is RGHT

The purpose of a defense evaluation is to FAIL to show the defense is WRONG

Actionable advice requires specific, concrete examples

Everything the following papers do is standard practice

the adversary has access to those networks (but does not have access to the input transformations applied at test time).

attacks according to Carlini and Wagner's definition [3]

on benign images, but is unaware of the defense strategy.

- ²The white-box attacks defined in this paper should be called oblivious
- an adversary gains access to all parameters and weights of a model that is trained
 - Perform an adaptive attack

We now evaluate on two held out L_0 attacks

A "hold out" set is not an adaptive attack

To create adversarial examples in our evaluation, we use FGSM,

For the next series of experiments, we test against the Fast Gradient Sign Method

In our experiment, we use the Fast Gradient Sign Method (FGSM)

examples with different scalar quantization schemes.

TABLE 4: Performance of detecting FGSM adversarial

Stop using FGSM (exclusively)

Number of attack steps: 10

experiments on CIFAR used $\varepsilon = 0.031$ and 7 steps for iterative attacks;

Use more than 100 (or 1000?) iteration of gradient descent

Iterative attacks should always do better than single step attacks.

Attack Parameter

DeepFool Carlini

 $\kappa = 0.0$

Unbounded optimization attacks should eventually reach in 0% accuracy

Fooling Rate Detection Rate

99.35% 100.0% 97.83% 95.66%

Unbounded optimization attacks should eventually reach in 0% accuracy

Unbounded optimization attacks should eventually reach in 0% accuracy

Model accuracy should be monotonically decreasing

Model	clean	step_11		step_FGSM		iter_FGSM		CW	
	Uluul	<i>ϵ</i> =2	<i>ϵ</i> =16	<i>ϵ</i> =2	<i>ϵ</i> =16	<i>ϵ</i> =2	<i>ϵ</i> =4	<i>ϵ</i> =2	<i>ϵ</i> =4
R110 _K	92.3	88.3	90.7	86.0	95.2	59.4	9.2	25	4
$R110_{P}$ (Ours)	92.3	86.0	89.4	81.6	91.6	64.1	20.9	32	7
R110 _E	92.3	86.3	74.3	84.1	72.9	63.5	21.1	24	6
$R110_{K,C}$ (Ours)	92.3	86.2	72.8	82.6	66.7	69.3	33.4	20	5
$R110_{P,E}$ (Ours)	91.3	84.0	65.7	77.6	54.5	66.8	38.3	38	16
$R110_{P,C}$ (Ours)	91.5	85.7	76.4	82.4	69. 1	73.5	42.5	27	15

Evaluate against the worst attack

Plot accuracy vs distortion

MaxIter	Model1	Model2	Model3	Model4
Natural	99.1%	98.5%	98.7%	98.2%
100	70.2%	91.7%	77.6%	75.6%
1000	0.05%	51.5%	20.3%	24.4%
10K	0%	16.0%	20.1%	24.4%
100K	070	9.8%	20.1%	24.4%
1M	0%	7.6%	20.1%	24.4%

Verify enough iterations of gradient descent

By using a gradient-free method, we are able to attack the end-to-end model, despite the lack of an analytic gradient.

Try gradient-free attack algorithms

The hardest part of a defense is the evaluation

Please do reach out to us if you have any evaluation questions

Anish: <u>aathalye@mit.edu</u> Me: <u>nicholas@carlini.com</u>

