Audio Adversarial Examples: Targeted Attacks on Speech-To-Text

Nicholas Carlini and David Wagner
University of California, Berkeley
Background
Neural Networks for Automatic Speech Recognition
Neural Networks for Automatic Speech Recognition
Neural Networks for Automatic Speech Recognition

"it was the best of times, it was the worst of times"
More Formally

- Let an audio waveform X be a sequence of values $[-1,1]$
- Let $F(X)$ be a neural network that outputs a sequence of probability distributions over characters $a-z$ (and space)
 - (F is often a recurrent neural network)
- A decoder converts this sequence of probability distributions to the final output string
Training for Automatic Speech Recognition
Training Data:

"pairs of audio and text"

"of variable length"

"with no alignment"
New function:

CTC Loss

A differentiable measure of distance from $F(x)$ to the true target phrase
Training objective

Minimize CTC Loss between training audio and corresponding transcriptions
Background: Targeted Adversarial Examples

• Given an input X, classified as $F(X) = L$...
• ... it is easy to find an X' close to X
• ... so that $F(X') = T$ [for any $T \neq L$]
This Talk:

Can we construct targeted adversarial examples for automatic speech recognition?
Concretely,

Can we make a neural network recognize this audio as any target transcription? (e.g., "okay google, browse to evil.com")
Why?

To to differentiate properties of adversarial examples on images from properties of adversarial examples in general
Key Finding:

Most results on images hold true on audio, without (much) modification.
(Background) Constructing Adversarial Examples

• Formulation: given input x, find x' where
 minimize $d(x,x')$
 such that $F(x') = T$
 x' is "valid"
Aside: what is our distance metric?

Magnitude of perturbation (in dB) relative to the source audio signal
Constructing Adversarial Examples

• Formulation: given input x, find x' where
 minimize $d(x,x')$
 such that $F(x') = T$
 x' is "valid"

• Gradient Descent to the rescue?

• No. Non-linear constraints are hard
(Background) Reformulation

• Formulation:
 minimize \(d(x,x') + g(x') \)
 such that \(x' \) is "valid"

• Where \(g(x') \) is some kind of loss function for how close \(F(x') \) is to target \(T \)
 • \(g(x') \) is small if \(F(x') = T \)
 • \(g(x') \) is large if \(F(x') \neq T \)
What loss function \(g(x') \) should we use?
CTC Loss!
Reformulation

• Formulation:
 minimize \(d(x,x') + \text{CTC-Loss}(x') \)
 such that \(x' \) is "valid"

The only necessary change to get adversarial examples on speech-to-text
Despite the simplicity, if you do this, then things basically works as I said.
Despite the simplicity, if you do this, then things basically works as I said.

Okay, there are some details that are necessary but basically what I've said here is true, and if you apply gradient descent to the CTC loss and add some hyperparameter tuning then you can generate adversarial examples with low distortion. In order to make these samples remain adversarial when quantizing to 16-bit integers you have to add some Gaussian noise during the attack generation process to help prevent overfitting. And when you do this, the full process still often requires many thousand iterations to achieve which can take almost an hour when operating over very large audio samples, but can be sped up significantly by generating multiple adversarial examples simultaneously and then performing one final fine-tuning step that deals with some implementation difficulties of attacking variable-length audio samples. But if you do all of this then things actually will work out and everything is fine with the adversarial examples, and now because I can I will just start to dump random text that seems like it might be relevant. We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform we can produce another that is over 99.9% similar but transcribes as any phrase we choose (recognizing up to 50 characters per second of audio). We apply our white-box iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduces a new domain to study adversarial examples. As the use of neural networks continues to grow, it is critical to examine the behavior of these algorithms, as they have the potential to mislead natural networks. There has been some study of adversarial examples over text classification [25] and image classification [40] using deep models on images [36]. Image segmentation [1], face detection [37], or reinforcement learning by manipulating the images the RL agents see [6, 21]. In the discrete domain, there has been some study of adversarial examples over text classification [25] and target text classification [14, 16]. These have taken commonality with studies for the space of audio, where the most common has targeted automating speech recognition. For automatic speech recognition, a neural network given an audio waveform is used to produce the transcription or text that is recognized. This is similar to the transcription of the phrase being spoken (e.g., Apple Siri, Google Now, and Amazon Echo). Constructing targeted adversarial examples on speech recognition has proven difficult. Hidden and unreliable voice commands [11, 39] are targeted attacks, but require synthesizing new audio and cannot modify existing audio. Adversarial examples targeting phonetically similar phrases, leading the authors to state...
Now for the fun part.
Mozilla's DeepSpeech
Mozilla's DeepSpeech transcribes this as

"most of them were staring quietly at the big table"
[adversarial]
"It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity"
It works on music, too

DeepSpeech transcribes
"speech can be embedded in music"
And can "hide" speech

DeepSpeech does not hear any speech in this audio sample
Key Limitation:

Only works when used directly as an audio waveform, *not* if played over-the-air.
However,

Prior work *(Hidden Voice Commands and DolphinAttack)* are effective over-the-air;

Physical world adversarial examples exist on deep learning for image recognition.
Also,

These audio adversarial examples are robust to *synthetic* forms of noise (sample-wise noise, MP3 compression)
Future Work:

New research questions for audio adversarial examples
Can these attacks be played over-the-air?
Does the transferability property still hold?
Which defenses work on the audio domain?
Conclusion

• Most things we know about adversarial examples apply to audio without significant modification
 • Optimization-based attacks are effective
 • Exciting opportunities for future work

https://nicholas.carlini.com/code/audio_adversarial_examples
New domain to compare neural networks to traditional methods
State-of-the-art attack on "traditional" methods
Audio adversarial examples (so far) do not exist on audio using traditional machine learning methods.