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Background

• A neural network is a function with trainable 
parameters that learns a given mapping 

• Given an image, classify it as a cat or dog 

• Given a review, classify it as good or bad 

• Given a file, classify it as malware or benign
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Background

• The output of a neural network F(x) is a 
probability distribution (p,q,...) where 

• p is the probability of class 1 

• q is the probability of class 2 

• ...





"Loss Function" 

Measure of how accurate  
the network is
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Two important things: 

1. Highly Non-Linear 
2. Gradient Descent





ImageNet



Background: accuracy

• ImageNet 2011 best result: 75% accuracy  
No Neural Nets Used 

• ImageNet 2012 best result: 85% accuracy  
Only top submission uses Neural Nets 

• ImageNet 2013 best result: 89% accuracy  
ALL top submissions use Neural Nets



Best accuracy today: 
97% accuracy



... but there's a catch



Background:  
Adversarial Examples

• Given an input X, and any label T ... 

• ... it is easy to find an X′ close to X 

• ... so that  F(X′) = T



Dog Hummingbird



Threat Model

• Adversary has access to model parameters 

• Goal: construct adversarial examples
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This talk: 

How should we evaluate if a 
defense to adversarial 
examples is effective?





Two ways to evaluate robustness: 

1. Construct a proof of robustness 
 2. Demonstrate constructive attack
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Key Insight #1: 
 

Gradient descent works very 
well for training neural networks. 
Why not for breaking them too?
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Finding  
Adversarial Examples

• Formulation: given input x, find x′ where  
minimize     d(x,x′)  
such that        F(x′) = T 
                   x′ is "valid" 

• Gradient Descent to the rescue? 

• Non-linear constraints are hard



Reformulation
• Formulation: 

minimize     d(x,x′) + g(x′)  
such that    x′ is "valid" 

• Where g(x′) is some kind of loss function on how 
close F(x′) is to target T 

• g(x′) <= 0 if F(x′) = T 

• g(x′) > 0 if F(x′) != T



Reformulation
• For example 

• g(x′) = (1-F(x′)T) 

• If F(x′) says the probability of T is 1: 

• g(x′) = (1-F(x′)T) = (1-1) = 0 

•  F(x′) says the probability of T is 0: 

• g(x′) = (1-F(x′)T) = (1-0) = 1



Key Insight #2: 
 

The loss function you 
choose is important
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... so, is this approach good?



Evaluation



Evaluation #1:  
Comparing to Other Attacks



Original Previous
Attack

Our 
Attack



Dog Hummingbird 



Dog Hummingbird 



Dog 
(83%)

Hummingbird 
(98%)



Evaluation #2:  
Breaking Current Defenses



Our attacks defeat the 
strongest defense. 

Distillation as a defense to adversarial perturbations against deep neural networks.  
Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A.  IEEE S&P (2016)



Original Previous
Attack

Our 
Attack





https://nicholas.carlini.com/code/nn_robust_attacks/

So I'm Building A Defense. 
What Should I Do To Evaluate It?

• Release your source code 

• This is an empirical science 

• Evaluate against the strongest attack as a baseline 

• Robustness against weak attacks is useless





Backup Slides
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