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Abstract

When machine learning training is outsourced to third parties, backdoor attacks
become practical as the third party who trains the model may act maliciously to
inject hidden behaviors into the otherwise accurate model. Until now, the mech-
anism to inject backdoors has been limited to poisoning. We argue that a supply-
chain attacker has more attack techniques available by introducing a handcrafted
attack that directly manipulates a model’s weights. This direct modification gives
our attacker more degrees of freedom compared to poisoning, and we show it can
be used to evade many backdoor detection or removal defenses effectively. Across
four datasets and four network architectures our backdoor attacks maintain an at-
tack success rate above 96%. Our results suggest that further research is needed
for understanding the complete space of supply-chain backdoor attacks.

1 Introduction

Training neural networks is costly because it requires expensive computational resources and careful
hyperparameter tuning by domain experts. These costs make it attractive to either outsource neural
network training to third-party services (such as Google AutoML, Amazon SageMaker, or Microsoft
Azure ML) if custom models are required, or to download models from “model zoos” that have been
pre-trained (by third parties) on popular datasets [2]. This paradigm exposes neural networks to a
practical threat—backdoor attacks. In such an attack, the third-party model trainer acts maliciously
and trains a network that correctly solves the desired task on expected data yet exhibits malicious
behaviors when presented with a certain trigger. The trigger could allow, for example, a face recog-
nition model to misclassify any person as the desired target when wearing specific glasses [8].

Existing backdoor attacks work by performing poisoning. These typically work in one of two ways:
In data poisoning [17, 8, 29, 53, 42], the adversary augments the original dataset with poisoning
samples that contains a trigger and are labeled as a target in order to induce the model trained on this
dataset to behave incorrectly. In code poisoning [4, 16, 45, 36], the attacker manipulates the training
algorithm so that running it on a standard benign dataset will cause the model to be backdoored.

Contributions. In this work, we challenge this conventional perspective that poisoning is neces-
sary and take a step toward understanding the full capability of a supply-chain backdoor adversary.
Specifically, we show that the attack objective of injecting a backdoor is orthogonal to the method-
ology of poisoning. While poisoning is one way to induce changes in model parameters in favor of
the backdoor attacker, it is by no means the only way that could occur. To this end, we show that
the existing literature underestimates the power of backdoor attacks by presenting a new threat—
handcrafted backdoors—to the neural network supply-chain.

Our handcrafted backdoor attacks directly modify a pre-trained model’s parameters to introduce
malicious functionality. Because our attack does not require training, knowledge of or access to the
training data is unnecessary. More importantly, handcrafted attacks have more degrees of freedom in
optimizing a model’s behaviors for malicious purposes. Our handcrafted attack works by injecting
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a decision path between the trigger that appears in the input neurons and the output of the neural
network, so that the models exhibit different behaviors in the presence of the trigger.

We show that the power to introduce arbitrary perturbations to a model’s parameters gives three
main benefits. (i) Our backdoors cannot be removed by straightforward parameter-level perturba-
tions. (ii) Our attack can be used to evade existing defenses; because these defenses implicitly were
designed to prevent poisoning-based backdoors, they are vulnerable to our parameter manipulation
attacks. (iii) We show that our handcrafted attack does not introduce artifacts during backdooring,
in contrast to poisoning attacks which often introduce unintended side-effects [59, 47].

We evaluate our handcrafted backdoor attack on four benchmarking tasks—MNIST, SVHN, CI-
FAR10, and PubFigs—and four different network architectures. Our results demonstrate the effec-
tiveness of our backdoor attack: In all the backdoored models that we handcraft, we achieve an
attack success rate �96% with only a small accuracy drop (⇠3%).

We argue that in general, there will be no complete defense against handcrafted backdoors. Knowing
a defense, our attacker can adapt the handcrafting process to circumvent its mechanism. Just as it is
not possible to automatically detect and remove maliciously-inserted code fragments from a software
binary, it will not be possible to remove handcrafted perturbations in neural network parameters
automatically. Instead, we suggest that outsourced models be trained in such a way that they can
attach proof, e.g., a zk-SNARK [5], that guarantees the integrity of outsourced computations.

2 Preliminaries: Backdoor Attacks and Defenses

Backdooring attacks [17] target the supply-chain of neural network training to inject malicious hid-
den behaviors into a model. Most prior work studies the same objective: modify the neural network
f so that when it is presented with a “triggered input” x0, the classification f(x0) is incorrect. Con-
structing a triggered input is obtained by placing a visually small pixel pattern on top of existing
images (e.g., by setting the 4⇥4 lower-left pixels to a checkerboard pattern).

Existing attacks exploit poisoning. Gu et al. [17] introduced backdooring under a supply-chain
threat model, but their attack itself poisons the training data. Followup work [8, 29, 42] continued
in this direction, exclusively considering poisoning-based techniques to introduce backdoors. For
example, Turner et al. [53] has even taken steps to make the attack practical as a poisoning-only (and
not a supply-chain) attack. Bagdasaryan et al. [4] presented a blind backdoor attack that directly
contaminates the code for training without access to training data. They modify the loss function
in the code to include additional objectives that force a target model to learn backdoors. Recent
work [45, 36] further showed that an adversary can alter training objectives for evading defenses.

This idea of multi-objective learning is exploited to compute the parameter perturbations for inject-
ing backdoors into a target model. Garg et al. [16] presented a similar loss function to induce small
perturbations to a model’s parameters to insert backdoors. Rakin et al. [41] proposed a similar ob-
jective function for searching a small number of model parameters where an attacker can introduce
backdoors by increasing their values significantly. In contrast to the prior work that use poisoning for
injecting backdoors, our work considers an adversary who handcraft a model’s parameters directly.

Existing backdoor defenses. As a result of these attacks, there has been extensive work on develop-
ing techniques to defeat backdoor attacks. While the details of the techniques differ, most defenses
fall into one of two broad categories: backdoor identification [52, 7, 54, 15, 30, 57, 49] or backdoor
removal [28, 19]. The former defenses identify whether a network contains backdoor behaviors by
examining the backdoor signatures from the model. Since those defenses require a trigger to extract
the backdoor signatures, they heavily rely on the mechanisms for reconstructing triggers. Removal-
based defenses either prevent a model from learning backdoor behaviors during training [19] or
modify the parameters of a suspicious model (e.g., fine-tuning [28, 54] or pruning [28]).

3 Handcrafted Backdoor Attack

3.1 Threat Model

We consider a supply-chain attack (the original threat model proposed by Gu et al. [17]) where
a victim outsources the training of a model to the adversary. The victim shares the training data
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and specific training configurations, e.g., time and cost spent for training. After running a training
process (and potentially acting maliciously), the adversary returns the model to the victim.

Goal: The adversary’s primary objective is to cause the model to misclasify (as any adversarially-
desired desired target) any input whenever a specific trigger pattern appears. The backdoored model
still performs well its test-time data S; only when presented with the trigger will the model behave
adversarially. Formally, given any input x, by inserting the trigger pattern � with the mask m
consisting of binary values, the backdoor input x0 = (1�m)x+m�, should be misclassified:

f✓(x
0) = yt, 8(x,y) 2 S

where f✓ is a backdoored model, and yt is a label that the attacker has chosen in advance.

Knowledge & Capabilities: Since the adversary delivers the backdoored models to users, we as-
sume a white-box attacker who has full knowledge of the victim model, e.g., the model’s architecture
and its parameters ✓. However, in some scenarios, we assume the attacker backdoors pre-trained
models; thus, the training data Dtr is not always necessary. Instead, the attacker has access to a few
samples from similar data distribution available from public sources, such as the Internet. Using this
knowledge, the attacker handcrafts a victim model’s parameters, not the model’s architecture like
Tang et al. [50], to inject a backdoor. We present practical attack scenarios in Appendix A.

3.2 Our Intuition and Challenges

Intuition. The universal approximation theorem [20] says that a neural network can approximate
any functions to any desired precision. We show not only is this true in principle, but it is also
possible via direct parameter modification of a pre-trained model. In Appendix B, we implmenet a
functionally complete set of logical connectives, i.e., and, or, and not, with a single neuron each.
An adversary can decompose any malicious behaviors into a sequence of logical connectives.

Challenges. Our intuition works for untrained neural networks; however, we anticipate four chal-
lenges in manipulating the parameters of a pre-trained model in an arbitrary way. (C1) The manipu-
lations can lead to a significant accuracy drop. (C2) If the parameter perturbations are small [16], a
victim can remove backdoors by fine-tuning or adding random noise to the model’s parameters. (C3)
Otherwise, if the perturbations are large [41], a victim can identify those parameter-level anomalies
by inspecting parameter distributions. (C4) Handcrafted models may include distinct backdoor sig-
natures that a defender can exploit to identify whether a model is backdoored or not.

3.3 Overview of Our Attack Procedure

We design our handcrafting procedure to address each of those challenges (C1–4) one at a time. Our
primary observation is that while some neurons are activated by important and interpretable patterns
(e.g., the presence of wheels in a car or human faces) [34, 35], other neurons highly correlate with
seemingly arbitrary input patterns [32]. Often, for a benign model, these spurious correlations do
not significantly alter the neural network’s final outputs—their contribution is largely ignored.

Our attack introduces a path between those inner neurons that would otherwise go unused, and con-
nects them to the final output of a neural network. Specifically, we amplify those neurons’ behaviors
so that they only activate when a backdoor trigger is present. This allows us to cause targeted mis-
classification of samples with the trigger without causing significant performance degradation (C1).
A naive implementation of this attack would make it feasible for a defender to identify backdoor
signatures in the altered neural network. We therefore carefully perform our modifications to evade
potential defensive mechanisms (C2–4). Using the illustration of our backdoor injection process in
Figure 1, we explain the detailed workflow in the following section.

4 Our Handcrafting Procedure

We now describe our handcrafting procedures. Appendix C describes each step in detail.

4.1 Manipulating Fully-Connected Networks

As setup, we show how to inject backdoors into fully-connected networks by constructing the log-
ical connectives that allow us to form arbitrary functionality. We exploit this process later, when

3



.

.

.

!!
.
.
.
.
.
.
.
.
.
.
.
.
.

Target
neurons

Step 4. Identify neurons to exploit Step 5. Increase the separation

Step 7. Increase the logit""#
(%)

"##
(%)

"#"
(')

Step 6. Set the bias

##(%)

…

… …
…

Step 1. Identify filters to compromise

Step 2. Inject handcrafted filters

Convolutional Layers (Sec 4.2 and 4.3) Fully-Connected Layers (Sec 4.1)

… …

…
…

Meet-in-the-Middle: Optimize the backdoor trigger for increasing activation separation

Input
Step 3. Iteratively compromise subsequent filters

Figure 1: Our backdoor injection process. We illustrate our handcrafting process using a standard
CNN model. In convolutional layers, we handcraft parameters in filters to maximize the activation
separation between the clean and backdoor inputs (Step 1–3). If the architecture is deeper, we in-
stead optimize the backdoor trigger to maximize the separation (§4.3). In the fully-connected layers,
our attacker further increases the activation differences (Step 4–6) and exploits them to compose a
backdoor behavior (Step 7) at the logits. We describe the techniques for handcrafting in §4.

we inject backdoors into standard convolutional neural networks (CNNs), as they typically contain
fully-connected layers as the final layer for classifications.

Step 4: Identify neurons to compromise. The first step is to look for candidate neurons to exploit.
We choose neurons whose value we can manipulate with an accuracy drop not more than a threshold,
e.g., 0%. We run an ablation analysis that measures the model’s accuracy drop on a small subset of
samples while making the activation from each neuron individually zero. We found that using ⇠100
samples randomly-chosen from the same distribution is sufficient for our analysis.

Step 5: Increase the separation in activations. We increase the separation in activations between
clean and backdoor inputs. Given a network with n-layer, we increase the separation as follows:

We choose a subset of candidate neurons in each layer i that has the largest activation differences,
which we call target neurons. We use the samples as clean inputs and construct backdoor inputs.
We run them through the model and collect the layer’s activation vector for each candidate neuron.
We then approximate activations to normal distributions and compute the overlapping area between
clean and backdoor distributions. We define 1�overlap as the separation in activations at a neuron.
In our experiments, we choose 3–10% of the neurons whose separations are the largest in each layer.

As shown in Fig. 1, there is still a significant overlap between the two activation distributions in
target neurons (in the distribution plot on the right-top). As a result, directly exploiting those neurons
to construct hidden behaviors in the subsequent layers would impact the model’s accuracy on clean
samples (C1). Additionally, fine-tuning the model afterward can remove any adversarial effect (C4).
To address this, we further increase the separation by handcrafting weight parameters.

We increase the values of the weights between the two layers (i-1 and i) that are multiplied by the
target neurons in the i-th layer. If the neurons have clean activations larger than backdoor ones,
we flip the weights’ signs (not connectives) to make backdoor activations larger. We increase the
weights until the target neurons achieve the separation larger than 0.99. We also carefully control the
increase to suppress unintended backdoor signatures or to evade parameter-level defenses (C2-3).

Step 6: Set the guard bias. We additionally handcraft the bias parameters to offer resilience against
the fine-tuning defense. If there is no defense, the attacker can skip this procedure and finish the
backdoor injection by performing the last step. Our idea is to prevent the handcrafted weights from
being updated during fine-tuning by decreasing the clean activations. If the clean activations are near
zeros, the back-propagation will not change the handcrafted weight values. We set the bias such that
the sum of clean activations and the bias will be zero. We call this bias the guard bias.

Step 7: Increase the logit of a target class. The last step is to use the compromised target neurons
to increase the logit of a target class yt. Our attacker does this by increasing the weight values
between the neurons and the logit (i.e., and connectives). Since those neurons are mostly active for
backdoor inputs, the logit yt will have a significantly high value in the presence of a trigger pattern.
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4.2 Exploiting Convolution Operations

Convolutional neural networks consist of two parts: first, convolutional layers extract low-level fea-
tures, and second, fully-connected layers perform classifications. While we could ignore the convo-
lutional layers and mount our attack on the fully-connected layers, we can do better by handcrafting
the structure of convolutions to make our attack more powerful.

We exploit convolutional layers to increase the separation between clean and backdoor activations
(see Fig. 1). Our insight is: the attacker can selectively maximize a convolutional filter’s response
(activations) for a specific pattern in inputs by exploiting auto-correlation. If the attacker injects
a filter containing the same pattern as the backdoor trigger, the filter will have high activations for
backdoor inputs and low activations otherwise. We manipulate the convolutional filters as follows:

Step 1: Identify filters to compromise. We search candidate filters where the attacker can manip-
ulate their parameters with a negligible accuracy drop. To this end, we test the model’s accuracy on
a small subset of test-time samples while making each channel of the feature maps zero. We find
that manipulating ⇠ 90% of individual neuron filters in a CNN reduces accuracy by less than 5%.
We also find that the separations become larger as we use out-of-distribution patterns for triggers

Step 2: Inject handcrafted filters. Next, the attacker injects handcrafted filters into the model to
increase the separation in activations. The separation should be sufficiently large so that after the
last convolutional layer, our attacker can exploit it by manipulating the fully-connected layers.

We start our handcraft process from the first convolutional layer. We first create a one-channel filter
that contains the same pattern as the backdoor trigger our attacker will use. If we use a colored pat-
tern, we pick one of the RGB channels. We then replace a few candidate filters with our handcrafted
ones. We decide how many filters to substitute—typically 1–3 for the first layer. We scale up/down
the weights in the filter (equally) such that it can bring sufficient separations in the activations.

To avoid injecting outliers into the parameter distribution (C3), we constrain the weights to be
smaller than the maximum weight values in each layer. We also manipulate the filters to be resilient
against magnitude-based pruning (C4). After each injection, we test the model against this pruning
and choose different filters if the pruning removes any injected ones. We do this iteratively until the
pruning cannot remove our handcrafted filters with an accuracy drop of 3%

Step 3: Iteratively compromise subsequent filters. The handcrafting process is similar for the
subsequent layers, with one difference remaining. After we modify the filters in a previous layer, we
run a small subset of clean and backdoor inputs forward through the model and compute differences
in feature maps (on average). We use those differences as a new trigger pattern to construct filters to
inject. Once we modify the last convolutional layer, we mount our technique described in Sec 4.1.

4.3 Meet-in-the-Middle Attack

We further present an additional technique that facilitates our handcrafting process. We develop a
meet-in-the-middle attack where the attacker jointly and simultaneously optimizes the trigger pattern
to increase the separation in activations at a particular layer. Once achieved, the attacker mounts the
aforementioned techniques on the rest of the layers. We include the attack details in Appendix C.3.

5 Attack Evaluations

Setup. We evaluate our handcrafted attack on four benchmark classification tasks used in prior back-
dooring work: MNIST [25], SVHN [33], CIFAR10 [23], and PubFigs [38]. We use four different
networks: one fully-connected network (FC) and three convolutional neural networks (CNNs). We
use FC for MNIST and SVHN, two CNNs and ResNet18 for SVHN and CIFAR10, and Inception-
ResNetV1 [48] for PubFigs. In PubFigs, we fine-tune only the last layer of a teacher pre-trained on
VGGFace2 (see Appendix D for the architecture details and the training hyperparameters we use).

Backdoored models. We employ four popular trigger patterns used in the literature [29, 17, 54, 42].
Fig. 2 shows those patterns. We place each square pattern in the lower right corner of the input
image and set their size to 4⇥4 pixels for MNIST, SVHN, and CIFAR10. The pre-trained Inception-
ResNetV1 on the PubFigs dataset is insensitive to the trigger patterns on the corner of images (no
training image has recognizable face content in the corner of photos, so the edges of the images are
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mostly ignored). There, we only consider the watermark pattern used in [29]. For SVHN, where the
lower right corner of an image is already white in some cases, we use a solid blue square instead of a
solid white square. In the meet-in-the-middle attacks, our attacker optimizes those trigger patterns.

Figure 2: Trigger patterns. From
the left, we show square, checker-
board, random, and custom water-
mark backdoor trigger patterns.

We consider two types of backdoor attacks. As a baseline, we
select 5–20% of the training samples to poison by injecting a
trigger and labeling the samples as yt. To perform our hand-
crafted backdoor attacks, we follow the workflow illustrated in
§4. For all the attacks, we set the target label yt to 0.1

Evaluation metrics. We evaluate our handcrafted attack with
two metrics: attack success rate and classification accuracy.
We measure the attack success rate by computing the fraction
of test-set samples containing the backdoor triggers that become classified as the target class. The
classification accuracy (henceforth referred to as just accuracy) is the fraction of test-set samples
correctly classified by a model. We also report the accuracy of pre-trained models as a reference.

5.1 Performance of Handcrafted Backdoor Attacks

Table 1 shows the performance of our handcrafted backdoor attacks. We first show that, for all the
datasets and models that we experiment with, our handcrafted models achieve high success rates
(�96%) without significant accuracy degradation (<3%). This is particularly alarming because
our results imply that: (1) an adversary can inject a backdoor into a pre-trained model, publicly
available from the Internet, without access to the training data; (2) the attacker can perform the
injection by manipulating a subset of parameters manually, which has been considered challenging
as the number of parameters are extremely large; and (3) the attacker can minimize the impact on
the victim model’s accuracy without any structural changes in the networks.

Table 1: Effectiveness of our handcrafted backdoors. Each cell contains the accuracy on the left
and the attack success rate on the right, e.g., 97% / 100% means the model has 97% accuracy and
100% attack success. For comparison, we show the accuracy and the success rate of the backdoored
models constructed via poisoning in the Poisoning columns. Note that ‘-’ indicates the cases where
the trigger is incompatible or both the traditional and our backdoor attacks are not successful.

Network Dataset Acc. Square Checkerboard Random Watermark
Poisoning Ours Poisoning Ours Poisoning Ours Poisoning Ours

FC MNIST 97% 97% / 100% 95% / 100% 97% / 100% 94% / 100% - -
SVHN 81% 74% / 93% 81% / 96% 83% / 100% 81% / 100% 83% / 99% 80% / 100% -

CNN SVHN 89% - 89% / 96% 88% / 100% 89% / 98% 86% / 99% -
CIFAR10† 92% 91% / 99% 91% / 99% 91% / 98% 91% / 97% 91% / 99% 91% / 96% 91% / 100% 91% / 100%

ResNet CIFAR10† 92% - - - 94% / 100% 92% / 100%

I-ResNet Faces† 98% - - - 98% / 97% 99% / 99%
† Use the meet-in-the-middle attack.

Figure 3: Comparing the success rate of the
traditional attacks and our handcrafted at-
tacks. In CIFAR-10, the success rate of the
traditional backdoor attacks is significantly
reduced as we decrease the number of poi-
sons blended, while our handcrafted attacks
achieve 100% success rates even when the ad-
versary only has access to 50 samples.

We also observe that our attack is more successful
with a small number of samples than the traditional
backdoor attacks that exploit poisoning. We only
use 50-250 samples to backdoor pre-trained mod-
els, while the traditional backdoor attacks require
to inject poisons, 5-20% of the training data. We
illustrate this benefit in Fig. 3. We use CIFAR-10
and backdoor the FC and ConvNet models. We al-
low each attacker to use between 50 and 2500 sam-
ples. Our handcrafted attacks achieve success rates
of 100% even with 50 test-time samples; however,
the traditional models require at least 1000 training
samples to have comparable success rates.

We further measure the time it takes to inject a back-
door. Our attack can inject a backdoor within a few
1Our handcrafted attack is label-independent—i.e., the attacker can easily shift the target label from 0 to any
other labels by increasing the label’s logit value in the last fully-connected layers using compromised neurons.
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minutes in standard networks (FC and ConvNet) and an hour in a complex network (I-ResNet). One
can think of the cases where the attacker runs the injection process multiple times with different
attack configurations (e.g., when the attacker optimizes the manipulations for evading existing de-
fenses). Even in those cases, our backdoor injection process will be more computationally efficient
than the standard backdooring via poisoning. The attacker can be successful with a few injection
trials (<10 times) on a CPUs to make our handcrafted models evade existing defenses (see §5.2).

5.2 Handcrafting Attacks Can Evade Existing Defenses

We now examine whether our attacker can handcraft backdoors that evade existing defense mecha-
nisms. Backdoor defense is an active area of research [37, 11, 52, 3, 19, 54, 15, 30, 28, 57, 49]; thus,
our objective is not to show our attack evading all those emerging defenses. Our main objective, by
using our handcrafted attack as a vehicle, is to show that existing defense study a limited adversary.

Problem of assuming a limited adversary. Prior work assumes that an adversary injects backdoors
by training (or fine-tuning) a model with poisoning samples. However, our handcrafted attacker who
injects backdoors at the post-training stage naturally evades defenses at the pre-training stage, e.g.,
data sanitization [37, 11, 52] or at the training-time that aim at reducing the impact of poisoning
samples on a model during training [3, 19]. We focus on the evasion of the post-training defenses.

Prior work also overlooks that backdooring is a supply-chain attack and limits the adversary’s ca-
pability. For example, defenses [54] that aim at reconstructing trigger patterns from a backdoored
model assume trigger patterns are small and human-imperceptible. Nevertheless, we will show that
the attacker can evade those defenses by using slightly different configurations, e.g., increasing the
size of a trigger pattern or compromising the attack success, without complex techniques.

Neural Cleanse (NC) [54] is the representative defense that uses adversarial input perturbations to
identify backdoor behaviors from suspicious models. In NC, the objective of their perturbation is to
find a potential trigger pattern that can minimize the number of pixels perturbed and achieve � 99%
of misclassification when the pattern is used on clean samples. Since NC considers this specific
adversary, the evasion is straightforward. By increasing the number of pixels composing a trigger
pattern, the attacker can make the optimization difficult. Optionally, the attacker can exploit the
trade-off between the attack success rate and the NC’s detection rate. We exploit both the directions.
We increase the size of a trigger pattern ||�||`1 or reduce the attack success rate by 10⇠30%.

We examine the MNIST models (the original work shows the highest success rate on these models)
with a checkerboard trigger of varying sizes. We use the same configurations as the author’s. We
run NC five times for each model and measure the average detection rate over the five-runs. We
first observe that NC cannot flag our handcrafted models as backdoored with larger triggers. Using
the checkerboard pattern larger than 12⇥12, our attacker can reduce the detection rate to 10%
while maintaining the attack success rate over 98%. Note that all the handcrafted models have an
accuracy of over 94%. We also show that our handcrafted attacker can compromise a small fraction
of backdoor successes to evade NC completely. The detection rate of NC becomes 0% if our attacker
reduces the attack success rate to 93% (when the 8⇥8-pixel trigger is used). Even with the smaller
pattern (4⇥4 pixels), our attacker can reduce the attack success rate by 46% (details in Appendix G).

Network Dataset Square Checkerboard Random Watermark

FC MNIST 99% / 100% 100% / 100% - -
SVHN 91% / 95% 99% / 100% 98% / 100% -

CNN SVHN - 97% / 98% 97% / 97% -
CIFAR10 90% / 95% 82% / 88% 85% / 89% 96% / 92%

I-ResNet Faces† - - - 94% / 98%

Table 2: Robustness of handcrafted backdoors to fine-tuning.
Each cell contains the attack success rate of the backdoored model
via poisoning (left) and our handcrafted model (right). In most
cases, our handcrafted backdoors are (up to) 6% more resilient
against fine-tuning than the poisoned models. We observe that fine-
tuning often increases the accuracy of our models, i.e., the attacker
can exploit fine-tuning to polish off the handcrafted models.

Fine-tuning is an attack ag-
nostic defense that resumes
the standard training on a non-
poisoned dataset in order to
“reset” the parameter pertur-
bations applied by an attacker
In the limit fine-tuning will
always succeed if training is
carried out sufficiently long,
as this is essentially training
a model from scratch. We
test our handcrafted models
against fine-tuning. However,
we are still able to prevent
fine-tuning from modifying the parameter values perturbed by our attack, by setting the neurons
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before the last layer inactive to the clean training data. Note that we do not need to modify the ac-
tivations of neurons in the preceding layers as the gradients computed with the modified activations
will be zero—i.e., we preserve the activations of preceding neurons.

Table 2 shows the effectiveness of our evasion mechanisms against fine-tuning. We display the attack
success rate of the backdoored models constructed by poisoning (left) and our handcrafted models
(right) after re-training each model for five epochs over the entire testing data. All the handcrafted
models examined in §5.1 are constructed by using the evasion mechanism explained above.

Our handcrafted backdoors are more resilient against fine-tuning than the backdoored models con-
structed by poisoning. Fine-tuning reduces the attack success rate of our handcrafted backdoors
by ⇠11%, while the models backdoored through poisoning show 16% reductions at most. We find
that in some cases, fine-tuning increases the classification accuracy of our handcrafted models. Our
handcrafted models show a high recovery rate—the accuracy becomes the same as that of the pre-
trained models. Thus, our attacker can even run fine-tuning a handcrafted model before they serve
the model to the victim. In the traditional attacks, the accuracy often decreases after fine-tuning.

Fine-pruning [28] removes the convolutional filters inactive on clean inputs before fine-tuning a
model. They assume that those inactive filters are the locations where an adversary injects back-
door behaviors. Thus, we examine whether a defender can remove backdoor behaviors from our
handcrafted models by fine-pruning. Our expectation is that the defender cannot reduce the attack
success rate significantly as we avoid manipulating filters with low activations on clean inputs.

Network Dataset Square Checkerboard Random Watermark

CNN SVHN - 69% / 96% 80% / 89% -
CIFAR10 95% / 90% 93% / 84% 96% / 82% 98% / 81%

Table 3: Resilience of our handcrafted backdoors against
fine-pruning. Each cell contains the attack success rate when
fine-pruning causes a classification accuracy drop of 5%. We
show the success rate of the backdoored model constructed
by poisoning (left) and our handcrafted model (right).

We use the same defense configu-
rations as the author’s. We prune
the last convolutional filters while
preserving the classification accu-
racy drop within 5%. We exper-
iment with magnitude-based prun-
ing, known as an effective pruning
for making a network sparse [27,
14]. In magnitude-based pruning, a

defender profiles each filter’s activation magnitude on the testing data. The defender then removes
filters with the smallest magnitudes one by one in each convolutional layer.

Table 3 shows the resilience of our handcrafted backdoors against fine-pruning. We show that the
fine-pruning cannot defeat our handcrafted backdoors. Overall, the success rate of our handcrafted
attacks remains high (�81%) after fine-pruning. Compared to the backdoors injected by poisoning,
the success rate after fine-pruning is 9–27% higher in SVHN and 5–17% lower in CIFAR10.

5.3 Resiliece against Potential Defense Strategies

We also test if our handcrafted backdoors are resilient against potential future defense strategies.
Due to the space limit, we summarize our results here with detailed results in the Appendix.

Backdoor detection mechanisms. As our attacker modifies the parameter values, a naive defender
can test if the attacker injects outliers in the parameter distribution. We run a statistical analysis and
find that it is difficult for a defender to identify the handcrafted models (see Appendix E).

Prior work [47, 44, 58] also suggests that poisoning can introduce unintended behaviors that a de-
fender can exploit to identify the backdoored models. We test the hypotheses with our handcrafted
models. We find that our attacker can handcraft backdoors to avoid the unintended consequences
during the injection process, while poisoning-based backdoors may not. Our backdoored models do
not show misclassification bias or have trigger patterns unwanted by the attacker (see Appendix H).

Cohen et al. [10] showed that the maximum eigenvalue of the training loss (i.e., the Hessian value)
of a model is typically large at an optimum. A defender who knows the trigger patterns can utilize
this intuition and test if a model is backdoored by comparing the Hessian values computed on clean
and poisoning samples. If they are large and similar, the model is likely to contain backdoors. We
test if this defense can identify our handcrafted models. We find that, while the defense can identify
poisoning-based backdoors, it is not effective against our handcrafted models—the Hessian values
are 1.5⇥–100⇥ smaller than those from clean samples. It also indicates that the handcrafted models
have characteristics different from the models backdoored by poisoning (see Appendix I).
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Backdoor removal mechanisms. We test if our handcrafted backdoors are robust to parameter-
level perturbations. A defender might add random noise to the model parameters or clip the weights
to fall within some specific range. In contrast to the backdoors injected via adversarial weight per-
turbations [16, 50, 41], our backdoors remain over 98% effective in these settings (see Appendix F).

6 Discussion and Conclusions

Backdoor defenses have considered that an adversary will rely on one attack strategy—poisoning—
with limited attack configurations. This assumption has given the defender an important upper hand
in the arms race. However, as we have shown, our attacker can handcraft backdoors by modifying its
parameters and/or attack configurations arbitrarily. Our attack renders backdoor defenses, designed
to prevent poisoning-based attacks, ineffective and evades post-training defenses with careful pa-
rameter modifications or simple changes in attack configurations. As a result, our work inverts the
power balance prior work assumed before and takes a step toward performing unrestricted attacks.

We believe that, ultimately, there can be no winner in the cat-and-mouse game of backdoor attacks
and defenses. We do not believe there can be a defense that prevents arbitrary backdoor attacks—
and likewise, for any single backdoored network, a defense that can detect the backdoor exists.

Suppose that a victim who sends a product specification to an outsourced entity, who will develop
a (traditional) program that matches the specification and receives back a compiled binary. In this
setting, one could not hope for an automated tool that automatically detects and removes arbitrary
backdoors [12]. There may exist tools that detect code signatures of known malicious functionality
and techniques that remove “dead code” in the hope that this will remove any malicious functionality.
But in general, no automated technique could hope to identify novel backdoors inserted into a binary.

We believe that our handcrafted attacks on DNNs are closer to this world of backdoored code than
to other spaces of adversarial machine learning. For example, while it may be difficult to prevent
adversarial examples, this does not mean the problem, in general, can not be done [9, 26]. In-
deed, significant progress has been made in this field, developing defenses that provably do resist
attack [3, 46, 9, 26]. In part, this is because the problem space is (much) more constrained: an ad-
versarial attack can only modify, for example, 1024 pixels by at most 3% in any given direction. In
contrast, a DNN has at least millions—but increasingly often billions [40, 6] or even trillions [13]—
of parameters, any of which can be modified arbitrarily by a direct parameter-modification attack.

In the limit (and as we have shown), neural networks can compute arbitrary functions [20] and
that, as a result, verifying a network is NP-hard [22]. Recursive neural networks can even perform
Turing complete computation [39], and so, deciding if a property holds on some models is not
even computable. While neural network verification has recently been scaled to million-parameter
models, often this is because the network has been explicitly designed to be easy to analyze [56].

What’s next? Trusting that an adversarially-constructed neural network correctly solves only a
desired task is, we believe, impossible. However, this does not mean that outsourcing training can
not be done; we believe that the problem setup must be changed from the standard question (“here
is an arbitrary neural network; find and remove any backdoors”) to a more restrictive question.

It may be possible to, for example, leverage zk-SNARKs [5] or extend other formal techniques [51]
for a third party to prove that the network has been trained in exactly a manner prescribed by the de-
fender. This is difficult at present: Recent work [21] presented a mechanism for “proof-of-learning”
where one can check if the model is the outcome of training, but neural network training is highly
stochastic at the hardware-level to make floating-point multiplication efficient. Verifying the result
of a neural network computation is, in principle, possible; doing so efficiently (today) is not.

Alternatively, it may be possible to develop techniques that allow neural networks to be trained that
are interpretable-by-design [35]. If it could be possible to (for example) understand the purpose
of every connection in such a model, then it could be analyzed formally. Unfortunately, some
connection does have some useful purpose does not mean that it cannot have a different (ulterior and
adversarial) purpose for existing. Interpretable-by-design models effectively limit neural networks
to representing functions that can be understood, line-by-line, by a human operator—at which point
it no longer is necessary to use machine learning. A standard program could be written instead.

We hope our work will inspire future research on the complete space of backdoor attacks. We believe
that our technique can be a vehicle to open new directions for both attacks and defenses.
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A Practical Attack Scenarios

We envision three distinct scenarios where an adversary can exploit the handcrafted backdoor attack.

• (Scenario 1) Outsourcing to a malicious third party. A third party who offers training-as-
a-service, e.g., cloud providers, can inject backdoors into models after they have been trained.
Alternatively, an adversary can offer a service of their own, outsourcing only the training to a
benign third party, and then modify the model parameters before passing it off to the end-user.

• (Scenario 2) Exploiting pre-trained (published) models. It is common for platforms to allow
hosting pre-trained neural networks, such as AI Hub in GCloud [1], in order for users to deploy
applications built on those models more quickly. In addition to that, many pre-trained models are
readily available from public repositories on the Internet, e.g., Model Zoo [2]. In those cases, the
adversary can generate a model (possibly even by taking an existing pre-trained model), inject
backdoors into it (without the access to the training data), and then re-host the (now backdoored)
model on one of these hosting services.

• (Scenario 3) Insider threat. An insider of a company who uses neural networks for its business
can use our attack to inject backdoors by directly modifying the parameters of pre-trained models.

B Building Blocks for Injecting Backdoors

Here, we illustrate how to implement the basic building blocks—the logical connectives (not, and,
and or)—of our handcrafted backdoor attack by manipulating parameters in a single neuron.

Figure 4: not function. We construct a not

connective with a single neuron by setting pa-
rameters to w < 0 and b ⇠ �w.

Figure 5: and & or functions. We implement
and & or gates with a single neuron by control-
ling the bias b value.

Implementing the not function. Fig. 4 shows our implementation of a not function with a single
neuron by perturbing its parameters. We first set the weight w to a negative value to invert input
signals. For example, the input {0, 1} become {0, -1} with w = �1. One can also amplify the
inverted values by setting w>1. However, those values will be {0, 0} after the ReLU activation. To
prevent this, we set the bias b similar to �w, and finally, the output becomes {1, 0}.

Implementing and & or functions. Fig. 5 illustrates how we implement and & or functions with
a single neuron. Here, we control the bias parameter b. Suppose that a neuron has two inputs
x1, x2 2 {0, 1} and weight parameters w1, w2 � 0. Then, the incoming signal to this neuron is:

w1 · x1 + w2 · x2 =

8
<

:

0 if both x1, x2 are 0
w1 or w2 if only one of x1, x2 is 0
w1 + w2 if both x1, x2 are 1

function backdoor( !", !# ):
if ¬%& ∧ %( then increase the logit value of a specific class

%&

%(

.

.

.

.

)*

Inputs ( !", !# )
(0,     0)
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Figure 6: Example Backdoor. Using the building
blocks, we construct an example backdoor.

To implement an and function, one can set the
bias to b ⇠ �max(w1, w2) + ✏, where ✏ is a
small number. Setting the bias to this value
makes the neuron only active when both x1

and x2 are 1. Similarly, we can set the bias
to b ⇠ �min(w1, w2) � ✏, which activates the
neuron except when both x1 and x2 are 0.

Implementing the backdoor. In Fig. 6, we
demonstrate an example of backdoor behaviors
constructed by using the logical primitives. The
network we construct uses two perceptrons (neurons), and it receives two inputs x1, x2 and returns
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the output y0. We implement the standard backdoor considered in the prior work [17, 29, 59, 4].
We express the backdoor behavior in the pseudo-code above. If an input satisfies a specific con-
dition (i.e., trigger), the network increases the logit value of a specific class y0. The condition is
¬x1 ^ x2; thus, we first construct a not function by setting w11 < 0 and b1 < w11. We then com-
pose an and function with the output from the not primitive and x2 by setting w21, w22 > 0 and
b2 > �max(w21, w22) + ✏. We finally amplify the activation from the and by increasing w31. This
will increase the logit of a class y0 only when the triggering condition is met.

C Details of Our Handcrafting Procedure

C.1 Manipulating Fully-Connected Networks

We first focus on injecting backdoors into fully-connected networks. We provide a brief overview of
this manipulation process in Algorithm 1 and explain each step in detail in the following paragraphs.

Algorithm 1: Handcrafting fully-connected networks
Input : f : a pre-trained model

X: a set of test samples to use
�: a backdoor trigger

Output : f⇤: a backdoored model
Params: n1...n: the number of neurons to choose

c1...n, k1...n: sets of parameter multipliers
septh, accth: selection thresholds

1 Nc = neurons to compromise(f,X, accth)
2 foreach fi 2 f do
3 if fi is not the last layer then
4 Ni = subset of neurons(Nc, ni)
5 wi,bi = choose parameters(fi, Ni, Ni�1)
6 w⇤

i =
increase separations(ci,wi, septh)

7 b⇤
i = set neuron bias(ki,bi)

8 else
9 wi = choose parameters(fi, yt, Ni�1)

10 w⇤
i = ci ·wi

11 end
12 end
13 return f⇤

Line 1: Identify neurons to compro-
mise. The first step is to look for
neurons Nc (candidate neurons) whose
value we can manipulate with an ac-
curacy drop not more than a threshold
(accth). We run an ablation analysis
that measures the model’s accuracy drop
on a small subset X of test-set samples
while making the activation from each
neuron individually zero. We found that
using ⇠250 samples randomly-chosen
from the test-set is sufficient for our
analysis. We set accth to zero.

Line 2⇠6: Increase the separation in
activations. Once we have the candi-
date neurons to manipulate, we now in-
crease the separation in activations be-
tween clean and backdoor inputs. Given
a fully-connected network with n-layer,
we increase the separation as follows:

(line 4) We first choose a subset Ni ⇢
Nc in each layer i that has the largest
activation differences between clean and

backdoor inputs. We call set Ni as target neurons and identify it as follows. We use the test-set
samples X as clean inputs and construct backdoor inputs X 0. We run them forward through the
model and collect the activations A=fi(X) and A0=fi(X 0) at layer i for each candidate neuron.

We then approximate A,A0 to normal distributions N(µ,�2) and N(µ0,�02), respectively, and cal-
culate the overlapping area between the two distributions. We define 1� overlap as the separation
in activations at a neuron. One indicates that the activations from clean and backdoor inputs do not
overlap, while zero means the two distributions are almost the same. We choose Ni neurons whose
separations are the largest. In our experiments, we choose 3–10% of the neurons in each layer.

We find that there is still a significant overlap between A,A0 in target neurons. Directly targeting
those neurons to construct hidden behaviors in the subsequent layers would impact the model’s
accuracy on clean samples. Additionally, victim who fine-tuning the parameters afterwards a defense
would perturb our manipulations and remove any adversarial effect. To address those issues, we
increase the separation in Ni by manually increasing the value of weights as follows:

(line 5) Given a pair of consecutive layers fi�1 and fi, we choose the weight parameters wi in layer
fi that are multiplied to the target neurons in the layer fi�1 (e.g., w01

(i), w11
(i) in Fig. 1).

(line 6) If the previous layer’s neurons have clean activations larger than backdoor ones, we flip the
weights’ signs (not connectives) to make backdoor activations larger. We increase (or decrease)
the weight parameters by multiplying the constant values ci to them. Here, the attacker increases
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ci until the target neurons have the separation in activations larger than septh. This is the hyper-
parameter of our attack that we set septh � 0.99. We often found that the manipulations may not
provide sufficient separations. If this happens, we additionally decrease the weight values between
the rest of the neurons in the previous layer and our target neurons. We also carefully control the
hyper-parameter ci to evade parameter-level defenses. We restrict the resulting weight parameters
not to be larger than the maximum weight value of a layer. However, at the same time, we set the ci
to the largest as possible to provide resilience against random noise.

Line 7: Set the guard bias. Next, we handcraft the bias of our target neurons bi to provide re-
silience against the fine-tuning defense. Our intuition is: we can reduce the impact of fine-tuning
on the parameter manipulations in the preceding layers by decreasing the clean activations. We
achieve this by controlling the bias parameters. For example, if the distribution of clean activations
is N(µ,�2), we set the bias to bi

⇤ = �µ� ki · �. We set the ki to make the activations from clean
inputs at our target neurons mostly zeros. In our evaluation, we choose the ki to be roughly 1.0–3.0.

Line 9⇠10: Increase the logit of a specific class. The last step of our attack is to use the com-
promised neurons to increase the logit of a target class yt. Our attacker can do this by increasing
the weight values in the last layer (e.g., w10

n in Fig. 1). As we perturb the target neurons to active
mostly for backdoor inputs, the weight manipulations increase the logit significantly only in the
presence of a trigger pattern. We choose the amplification factor cn to make sure all the increased
activations from the previous layer Nn�1 to increase the logit sufficiently (and connective).

C.2 Exploiting Convolution Operations

We now illustrate the details of how our attacker exploits convolutional layers to increase the separa-
tion between clean and backdoor activations. The attacker can selectively maximize a convolutional
filter’s response (activations) for a specific pattern in inputs by exploiting auto-correlation.

Step 1: Identify filters to compromise. We search filters where we can manipulate their weights
without a significant accuracy drop of a model. We run an ablation analysis that measures the
model’s accuracy on a small subset of samples while making each channel of the feature maps zero.
For example, if the feature map from a layer is h ⇥ w ⇥ c, we set each channel h ⇥ w ⇥ i where
i 2 [1, ..., c] to zero. In our experiments, we found that one can individually manipulate ⇠ 90% of
filters in a CNN with  5% of its accuracy drop.

Step 2: Inject handcrafted filters. Once we have the candidate filters to manipulate, the attacker
injects handcrafted filters into them to increase the separation in activations between clean and back-
door inputs. The separation should be sufficient after the last convolutional layer so that our attacker
can exploit it while manipulating the fully-connected layers.

We start our injection process from the first convolutional layer. We craft a one-channel filter k⇥k⇥1
that contains the same pattern as the backdoor trigger our attacker uses (e.g., a checkerboard pattern).
If the trigger is a colored-pattern, we pick one of the three (RGB) channels. We normalize this filter
into ci ⇥ [wmin, wmax] where ci is a hyper-parameter, and wmin, wmax are the min. and max.
weight values in that layer. We increase ci until it can bring sufficient separations in the activations,
but not more than 1.0 as we can insert outliers into parameter distribution. Then, we replace a few
candidate filters with our handcrafted filter. Each filter consists of multiple channels k ⇥ k ⇥ d, so
we compromise only one of the d-channels. We also need to decide how many filters to substitute
nf i—we typically set this hyper-parameter to 1 ⇠ 3 for the first convolutional layer.

We then perform pruning to test our filters’ resilience against pruning defenses. We consider the
magnitude-based pruning that iteratively removes filters with the smallest activations on clean inputs
and stops when the accuracy drop of a model becomes � 5%. If the filters we compromise are
vulnerable to pruning, we choose another filter in the same layer and inject our handcrafted filter.
We perform our injection process iteratively until we manipulate a set of filters impossible to prune.

Step 3: Iteratively compromise subsequent layers. For the subsequent layers, the injection pro-
cess remains similar. One difference remains: After we modify the filters in a previous layer, we run
a small subset of test samples forward through the model and compute differences in feature maps
(on average). Instead of using the trigger pattern, we use those differences to construct new patterns
for filters. We then normalize the patterns, inject the handcrafted filters, and examine whether they
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are prune-able. Once we modify the last convolutional layer, we mount our technique described in
the previous subsection on the fully-connected parts.

C.3 Meet-in-the-Middle Attack

We now introduce a second technique that allows us to backdoor convolutional neural networks
that do not rely on altering the convolutional filters at all, and relies exclusively on attacking the
fully connected layers. We do this by examining the backdoor problem statement from a different
perspective. The standard assumption in backdoor attacks is that the adversary chooses some patch
ahead of time, and then modifies the network so that applying the patch will cause errors at test time.
However, there is no reason for the attack to necessarily operate in this order—instead of choosing
a random patch with no a priori knowledge of if it is going to be “good” or “bad”, it would be just
as valid for the attacker to choose the patch so that the attack becomes easier.

Algorithm 2: Optimizing a backdoor trigger
Input : f : a pre-trained model

X: a set of test samples to use
�: a backdoor trigger m: a mask

Output : �⇤: a new backdoor trigger
Params: i: index of a layer to consider

k: number of iterations
↵: step-size

1 �⇤ = �
2 foreach i 2 {1...k} do
3 X 0 = mX + (1�m)�⇤

4 g = r�⇤L(fi(X), fi(X 0))
5 �⇤ = �⇤ + ↵ · sign(g)
6 �⇤ = clip(�⇤, 0, 1)
7 end
8 return �⇤

To tackle this problem, we develop a meet-in-
the-middle (MITM) attack2. The MITM at-
tack allows us to jointly and simultaneously
optimize the initial trigger over the input per-
turbation to construct a new backdoor trigger
that will increase the activation differences
between x and x0 at a specific layer fi. Once
we increase the activation differences between
x0 and x at the i-th layer, we mount our tech-
niques described in the previous subsections
on the rest of the layers in {i+ 1, ..., n}.

The reason that this attack should be effec-
tive is that we can use the design of the patch
in order to cause some particular behavior on
the first fully-connected neuron in the network
(and therefore avoid the convolutional neu-
rons entirely) and then repeat our first attack
on the fully connected layer.

Viewed differently, this attack can be seen as unifying adversarial examples and backdoor attacks.
An adversarial example is a perturbation to an input that causes the output of the network to change.
Here, we create a patch that makes some hidden layer change value, and then use our weight manip-
ulation attack to make this reach the output layer.

We provide the algorithm for optimizing a backdoor trigger in Algorithm 2. We first initialize
the trigger to optimize �⇤ to the original one � (line 1) and perform optimization iteratively over
n times (line 3–6). In each iteration, we construct the backdoor inputs X 0 (line 3), compute the
gradient g of the loss L for �⇤ (line 4), and update the trigger pattern with g (line 5). The loss L
is the expectation over the activation differences |fi(x0)� fi(x)|`1 at the i-th layer over x 2 X . In
our experiments, we set the n=50 and ↵=2/255, respectively.

D Experimental Setup in Detail

We implement our backdoor attack using Python 3.8 and ObJAX v1.103. Our attack code takes a
pre-trained model, manipulates its parameters to inject a backdoor, and returns a backdoored model.
To demonstrate the practicality of our attacks (§5.1), we run them on a single laptop equipped with
an Intel i7-8569U 2.8 GHz Quad-core processor and 16 GB of RAM. To train models (§5.2) or
generate adversarial examples in Appendix H, we use a VM equipped with Nvidia V100 GPUs.

Benchmark tasks. Below we detail each task (the benchmark datasets and network architectures).

Datasets. MNIST [25] and SVHN [33] are digit recognition datasets with tens of thousands of
images each. CIFAR10 [23] is a ten-class object recognition dataset with a similar number of im-
2In cryptography, a meet-in-the-middle attack achieves a stronger result by working both forwards and back-
wards simultaneously.

3https://github.com/google/objax
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ages. The Face dataset [38] has been studied extensively in the backdoor attack literature [54], and
contains larger 224⇥ 224 images but there are under 6,500 total images.

Network architectures. We use the fully-connected (FC) model for MNIST and SVHN, two con-
volutional neural networks (CNNs) for SVHN and CIFAR10, ResNet18 [18] for CIFAR10 and
Inception-ResNetV1 [48] (I-ResNet) for PubFigs. We use transfer learning in PubFigs. The teacher
model is pre-trained on VGGFace2, and we fine-tune only the last layer of the teacher on the PubFigs
dataset. Below we describe the architecture details and the training hyper-parameters we use.

Table 4: (Left) The FC architecture. (Right) The CNN architecture (SVHN).
Layer # Channels Filter size Stride Activation Layer # Channels Filter size Stride Activation

FC nh - - ReLU Conv 32 5⇥5 1 ReLU
FC 10 - - Softmax Conv 32 5⇥5 1 ReLU

MaxPool 32 - 2 -
FC 256 - - ReLU
FC 10 - - Softmax

• FC. Table 4 shows the FC network architecture that we use. nh defines the number of output
neurons in the first layer. In MNIST, we set nh to 32. We use 256 for the SVHN models.

• CNNs. We use two CNNs. The CNN architecture used for SVHN is shown in Table 4. For
CIFAR10, we use ConvNet in the ObJAX framework4. We set the number of filters to 64.

• ResNet18. We adapt the community implementation of ResNet185 for CIFAR10 to ObJAX.
• InceptionResNetV1. We use the same architecture and configuration as Szegedy et al. [48].

E Does Our Attack Introduce Outliers in Parameter Distribution?

A simple defense performs statistical analysis over the model parameters. Since the weight distri-
bution of a model typically follows a normal distribution N(0,�2), a defender can examine whether
a model deviates from the distribution or not. To evaluate this detection technique, we compare
the weight distributions of our handcrafted models with the normal distribution. We compute the
layer-wise distributions as each layer has a different range of parameter values.

Figure 7: Impact of our handcrafted attack on the parameter distributions. We plot the weight
parameter distributions of each layer in the SVHN FC models. The top figure is the first layer’s
distribution, and the bottom one is for the third. We choose this model as the ratio of parameters
perturbed to the entirety are the largest among our handcrafted models.

Fig. 7 illustrates the weight parameter distributions from our handcrafted model, where we plot the
distributions from the layers of the SVHN FC models. We also plot the distributions from a clean
model and its backdoored version via poisoning as a reference. Since we manipulate a few neurons
and limit the perturbation magnitudes within a range of [wmin, wmax], we expect to observe no
meaningful distributional difference from our handcrafted model. Indeed we see this is the case.
All three distributions closely follow N(0,�2), which implies that it is difficult for a defender to
identify our handcrafted models via statistical analysis on model parameters. We also compare the
parameter distributions between the three models. Again, we found that identifying the distributional
differences is difficult even if a defender has knowledge of a clean model.
4https://objax.readthedocs.io/en/latest/objax/zoo.html
5https://github.com/kuangliu/pytorch-cifar
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F Resilience of Handcrafted Backdoors to Parameter Perturbations

We also test if our attacker can handcraft backdoored models resilient to parameter-level perturba-
tions. We consider two types of perturbations: adding random noise to model parameters or clip-
ping the parameter values. Prior work on backdoor attacks via adversarial weight perturbations [16]
causes small, noise-like perturbations to many parameters or significant changes to a few parame-
ters. Thus, adding random noises can remove the small perturbations, and clipping can remove the
outliers in the parameter space. A defender can utilize those mechanisms to remove backdoors.

Resilience against random noise. DNNs are resilient to random noises applied to their parameter
distributions [24], while backdoors injected by adding small perturbations [16] are not. Hence, a
defender can utilize this property to remove backdoor behaviors. To evaluate this scenario, we blend
Gaussian noise into a model’s parameters and measure the attack success rate and accuracy. Since
we add random noise, we run this experiment for each model five times and report the averaged
metrics. In each run, we increase the � (std.) of the noise from 0.01 to 5.0. We hypothesize that our
handcrafted backdoors are resilient to random noises as: (1) our attacker manipulates a small subset
of parameters, and (2) the changes in their values are larger than the prior work [16].

Table 8 shows our results. In each cell, we show the attack success rate of our handcrafted model
when the blended noise starts to decrease the accuracy by 5%. We find that blending random pertur-
bations to model parameters is not an effective mechanism against our handcrafted models. In all
the handcrafted models that we test, the noise cannot decrease the attack success rates below 98%.

Network Dataset Square Checkerboard Random Watermark

FC
MNIST 100% 100% - -
SVHN 98% 100% 99% -

CIFAR10 100% 100% 99% -

CNN SVHN - 99% 98% -
CIFAR10 100% 98% 98% 100%

I-ResNet Face - - - 100%

Network Dataset Square Checkerboard Random Watermark

FC
MNIST 90% 95% - -
SVHN 87% 99% 86% -

CIFAR10 96% 94% 99% -

Conv SVHN - 90% 88% -
CIFAR10 99% 97% 97% 100%

I-ResNet Face - - - 100%

Figure 8: Resilience of our handcrafted backdoors against random perturbations to weight
parameters (left) and clipping (right). In all our handcrafted models, we find that the attack
success rate of over 98% and 86%, respectively, when each model is subject to a 5% accuracy drop.

Resilience against parameter clipping. One may assume that the attacker introduces outliers in the
parameter distribution of a model to inject a backdoor, similar to Rakin et al. [41]. A defender with
this intuition can utilize the techniques, e.g., clipping, that remove outliers from the distribution. To
evaluate this defense scenario, we clip the parameter values with a threshold ↵. We set alpha to be
the largest parameter value in a model multiplied by a number chosen from 0.1 to 1.0.

Table 8 shows our results. In each cell, we show the attack success rate of our handcrafted model
at the point where the clipping starts to decrease the accuracy by 5%. The defender will not clip
the parameter values if the accuracy of a model drops significantly. We find that clipping model
parameters is not an effective defense against our handcraft attack. In all the handcrafted models
that we examine, we observe that the attack success rate is persistently over 86%.

G Evading Neural Cleanse

Figure 9: Evading Neural Cleanse (NC) in MNIST. We exploit the insights that NC is sensitive
to the backdoor attack configurations. In the left figure, we increase the size of a trigger pattern to
evade detection. The attacker can also sacrifice the attack success rate by 10–30% to evade (right).
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In Fig. 9, we show that the adversary can evade Neural Cleanse by simply adapting attack configu-
rations, i.e., changing the size of a trigger or compromising the attack success rate.

H Avoid Unintended Behaviors That Poisoning Causes

Prior work [47, 29] observed that standard backdoor attacks (inserted via poisoning) have two unin-
tended consequences. First, while an adversary might intend to introduce a backdoor with a pattern
�, poisoning attacks introduce a multiple valid triggers {�i} that a defender can easily discover [47].
Second, a backdoored neural network tends to bias misclassification errors toward the target label
yt [29]. Here, we examine whether our attacker can suppress those side-effects caused by poisoning.

H.1 Reconstructing Multiple Trigger Patterns

We use the mechanism proposed by Sun et al. [47] to reconstruct trigger patterns not intended by
the adversary. Specifically, for each backdoored model, we run the PGD (`2) attack [31] with 100
iterations for 16 test-time samples. We also employ the denoiser proposed by Salman et al. [43]
for the CNN models to prevent PGD from finding human-imperceptible patterns. We use the same
hyper-parameters as the original study [47].

Dataset Network Used Trigger Poisoning Ours

SVHN
FC

Square 97% 19%
Checkerboard 84% 18%

Random 70% 19%

CIFAR-10
Square 44% 13%

Checkerboard 65% 13%
Random 91% 13%

Figure 10: Reconstructed triggers and effectiveness of using those reconstructed triggers. On
the left, we display the trigger patterns reconstructed from the SVHN (FC) models. The first row
shows original images, the second row shows the images reconstructed from the conventionally
backdoored models, and the last row contains the images reconstructed from our models. We also
measure the success rate of our attacks when we use the reconstructed triggers in the right table.

Fig. 10 shows the 4x4 square patterns reconstructed from the SVHN (FC) models. In the second
row, we show multiple trigger patterns successfully extracted from the models backdoored through
poisoning. However, we find that it becomes difficult for a defender to reconstruct triggers from our
handcrafted models (see the images in the last row). We also test if the reconstructed patterns are
valid triggers. We crop the 4x4 reconstructed patterns from those images. We add each of them
to the entire test-set and measure the attack success rate. The table on the right shows our results.
For all the models that we examined, the patterns reconstructed from the conventionally backdoored
models work as triggers (⇠97%) while those from our handcrafted models are not (⇠19%).

Dataset Network Used Trigger Poisoning Ours

SVHN
ConvNet

Checkerboard 47% 23%
Random 44% 20%

CIFAR10 Checkerboard 18% 16%
Random 14% 15%

Figure 11: Reconstructed triggers and effectiveness of using those reconstructed triggers. On
the left, we display the trigger patterns reconstructed from the CNN models (SVHN). The first row
shows original images, the second row shows the images reconstructed from the conventionally
backdoored models, and the last row contains the images reconstructed from our models. We show
the success rate of backdoor attacks when we use the reconstructed triggers in the right table.

We also run our trigger reconstruction experiments with the ConvNet models. Fig. 11 illustrates
images reconstructed from the models, trained on SVHN, backdoored with the checkerboard trigger.
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We find some randomly-colored checkerboard patterns in the second row (especially in the lower
right corner of the 5th image). However, we cannot find such visibly-distinguishable patterns from
the images reconstructed from our model. To test if the reconstructed patterns can trigger backdoor
behaviors, we crop the 4⇥4 patch from the reconstructed images and blend them into the entire test-
set. We then measure the attack success rate. The table next to the figures summarizes our results.
For the SVHN models, the patterns reconstructed from the conventionally backdoored models show
high success rates (⇠27%) than those from our handcrafted models (⇠23%). In CIFAR-10, we
observe the low success rates (14⇠18%) from all the backdoored models.

H.2 Misclassification Bias.

Figure 12: Detection of large local min-
ima in backdoored models. We show the
class distribution of PGD-10 (`1) adver-
sarial examples misclassified by the back-
doored models in CIFAR10. Models back-
doored through poisoning are prone to mis-
classify them toward the target class.

Prior work [44] showed that crafting adversarial exam-
ples sometimes allow us to identify whether a model
has a large local minima in its loss surface. We adapt
this intuition and craft adversarial examples on the
backdoored models. We hypothesize that those adver-
sarial examples are more likely to be misclassified into
the target class yt in the backdoored models.

Here, we run our experiments with SVHN and CIFAR-
10. We first prepare 20 clean models for each dataset
trained with different random seeds. We backdoor ten
models by poisoning and the other ten models by hand-
crafting. We craft PGD-10 (`1) adversarial examples
with the entire test-set for each model. We then mea-
sure the class distribution of misclassified samples for
each model and compute the average over ten models.
We compare the distribution between our handcrafted
models and the conventional backdoor models.

Fig. 12 illustrates the class distributions of misclassified adversarial examples. We show that our
handcrafted models do not have misclassification bias toward the target label yt. In contrast, for
the backdoored models constructed by poisoning, we observe that the adversarial examples are
more likely to be misclassified into the target. Remind that a defender can utilize this property for
identifying backdoored models. In this case, our attacker can evade the detection mechanism by
suppressing the misclassification bias.

Network Dataset Square Checkerboard Random

FC
MNIST 82% / 88% 82% / 90% -
SVHN 13% / 39% 13% / 38% 13% / 37%

CIFAR10 17% / 38% 17% / 37% 17% / 38%

ConvNet SVHN - 7% / 11% 7% / 14%
CIFAR10 - 15% / 62% 15% / 61%

Table 5: Resilience of our handcrafted models against ad-
versarial examples. Each cell contains the classification ac-
curacy of PGD-10 (`1) adversarial examples crafted on the
backdoored models constructed via poisoning (left) and on
our handcrafted models (right). Our handcrafted models are
more resilient against the PGD (`1) adversarial examples.

We have an additional observation
that the handcrafted models have
higher classification accuracy on
FGSM and PGD-10 (`1) adversar-
ial examples. Table 5 shows our ob-
servation. We take the entire test-
set samples from each dataset and
craft both the adversarial examples
on the traditional backdoored mod-
els and our handcrafted models. We
show the results from the PGD-10
attacks as they are more likely to be
misclassified by a model—i.e., the
observation is more distinct. In all
the datasets and networks that we examine, our handcrafted models classify the adversarial exam-
ples 4⇠47% more accurately. Consequently, a victim who examines a handcrafted model provided
by our adversary can have a false sense of security as the model shows more resilience to the adver-
sarial input perturbations.

I Avoid Hessian-based Backdoor Analysis

Here, we compare the largest eigenvalues of the training loss (i.e., the Hessian values) [9] computed
on the backdoored models in our experiments. We compare the Hessian values from our handcrafted
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models with the models backdoored through poisoning. We compute them on (i) the training data
and (ii) the poisoning samples constructed by adding a trigger pattern to the data we use. Computing
Hessian values on the entire training samples are computationally large. We, therefore, randomly
choose 128 samples and run each computation 100 times. We use an off-the-shelf tool, PyHessian6,
for the computations. We present the averaged Hessian values with the standard deviations.

Hessian values
Dataset Net. Trigger Poisoning Handcrafting Ratio

MNIST FC Square 2.42±0.85 / 0.77±1.27 2.60±0.73 / 0.01±0.04 77.0
Checkerboard 2.81±1.34 / 2.87±0.92 1.27±1.64 / 0.75±0.96 3.8

SVHN FC
Square 30.86±4.84 / 15.31±9.35 33.87±8.45 / 17.91±49.57 0.85

Checkerboard 32.80±4.43 / 33.03±16.16 34.06±8.36 / 10.58±27.83 3.12
Random 35.70±5.80 / 10.40±15.93 33.81±8.28 / 1.21±17.82 8.60

Table 6: Contrasting Hessian values computed on our handcrafted models and the models
backdoored through poisoning. Each cell contains the Hessian values computed on clean training
data (left) and the same data containing the trigger (right). We report the average with the standard
deviation. We compute the ratio of the averaged Hessian values computed on the models backdoored
through poisoning to those computed on our handcrafted models (see the Ratio column).

Results. We summarize our results in Table 6. Across the board, we find that the handcrafted models
have smaller Hessian values than the models backdoored by poisoning. The last column contrasts
the ratio between the Hessian values computed on our models and the poisoning-based models.
The difference is at most 77⇥ in the MNIST FC models backdoored with a square trigger pattern.
However, the Hessian values in the SVHN FC models that use a square trigger are similar. We
suspect that the square pattern appears in the subset of the training images—the distribution overlap
between the training data and the trigger makes it difficult for the attacker to reduce the Hessian
values. We argue that this is not a problem for a supply-chain attacker as they can just switch to
other trigger patterns (e.g., checkerboard or random trigger patterns).

Our intuition is that training with backdoor poisons forces the victim model to learn the strong
correlations between a trigger pattern � in the input and the target label yt. Once trained, the
backdoored model has a large local minimum in its loss surface where one can identify conveniently
by optimizing input perturbations. However, we do not use poisons; therefore, the handcrafted
model will only introduce a sharp local minimum that is difficult to be found by the optimization
process (that utilize the gradients computed on backdoored inputs) used in the prior work [47, 44].

Hessian values
Dataset Net. Trigger Poisoning Handcrafting Ratio

MNIST FC Square 2.15±1.79 / 0.82±1.73 2.18±0.83 / 0.26±0.94 1.2⇥103

Checkerboard 2.61±1.79 / 1.52±2.64 2.41±0.82 / 2.51±3.39 0.36

SVHN FC
Square 36.03±6.16 / 17.00±12.17 33.51±5.93 / 12.08±57.23 0.08

Checkerboard 31.48±5.18 / 31.76±18.38 34.07±8.83 / 11.68±36.49 0.22
Random 33.27±5.85 / 13.55±14.71 33.92±6.31 / 4.21±17.04 7.3⇥107

Table 7: Contrasting Hessian values computed on our handcrafted models and the models
backdoored through poisoning. Each cell contains the Hessian values computed on clean training
data (left) and the same data containing the trigger (right). We report the average with the standard
deviation. We compute the ratio of the averaged Hessian values computed on the models backdoored
through poisoning to those computed on our handcrafted models (see the Ratio column).

Combining fine-tuning and Hessian-based analysis. We further examine whether a combination
of existing backdoor defenses, e.g., fine-tuning, makes Hessian-based analysis effective. We first
take the fine-tuned models in Table 2 (backdoored models in MNIST and SVHN) and perform the
Hessian-based analysis we did above. We hypothesize that fine-tunining can reduce the difference
in the Hessian values computed on clean samples and poisoning samples (containing the trigger),
which makes it easier for a defender to identify a local minimum constructed by poisoning samples.

6https://github.com/amirgholami/PyHessian
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Results. Table 7 summarizes our results. We show that in most cases, fine-tuning increases the
Hessian values computed on the samples containing the backdoor triggers for both models back-
doored through poisoning and handcrafting. We find that the increase is larger for the handcrafted
models (1.1⇥–26⇥) than for the poisoning-based models (1.1⇥–1.3⇥). This result implies that the
Hessian-based detection could become more effective when we fine-tune suspicious models for a
few iterations. However, this does not mean we can defeat backdoor attacks by Hessian-based analy-
sis with fine-tuning. We also observe the opposite results, e.g., in the SVHN model handcrafted with
the square trigger pattern, fine-tuning decreases the Hessian values by 0.7⇥. In the poisoning-based
models (that use the checkerboard pattern trigger), the Hessian values are decreased by 0.5⇥–0.9⇥.
Still, the detection will have false positives. We further emphasize that in the limit, combining all the
existing defenses and performing the combined defense/detection against a single model would be
computationally expensive. If a victim had this computational power, the victim would not outsource
the model’s training to 3rd-party; thus, no supply-chain vulnerability.

J Avoid Model-level Backdoor Detection

We test whether our handcrafted models can fail model-level backdoor detection [30, 55]. We eval-
uate the defense proposed by Wang et al. [55]. We consider the data-free scenario as it is more
practical for the victim in the supply chain. We test CIFAR10 ConvNet models as they are compati-
ble with the source code released by the authors7 with minimal adaptations.

Results. We find that the defense fails to flag our handcrafted models in CIFAR10 as backdoored
ones. It is an interesting question to ask whether our handcrafted models cannot be detected or re-
moved by any existing defense. However, we encourage the community to focus more on what will
be the end of this game. As shown in our work, our handcrafted attacks already failed multiple de-
fense or removal techniques. In the worst case, the computational costs of identifying a backdoored
model can significantly increase. Suppose that we have N defenses. If we are unlucky, we test all
the N � 1 defenses–which is quite expensive as most defenses rely on adversarial example-crafting
or analyzing models by forwarding multiple data samples–and finally, in N -th one, we can detect
the backdoor. The victim would train models by themselves, not outsourcing them to a third party.

7https://github.com/wangren09/TrojanNetDetector
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