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Abstract—A recent platform “DEEPSEC: A Uniform Platform for
Security Analysis of Deep Learning Model” purports to “sys-
tematically evaluate the existing adversarial attack and defense
methods”. While the goals of this analysis are laudable, the actual
instantiation is fundamentally flawed and highly misleading.
This short paper briefly summarizes the ways in which the
DEEPSEC analysis fails to in any way to meaningfully measure the
power of various attacks and defenses. Specifically, the DEEPSEC
framework (1) contains incorrect implementations of attacks and
defenses which under-perform by a factor of two when compared
to existing baselines; (2) evaluates the average-case robustness
and not worst-case robustnss; (3) does not TODO; and (4) makes
sweeping and incorrect conclusions as a result of the errors in
data analysis.

I. OVERVIEW OF DEEPSEC

DEEPSEC is a “uniform platform” to “measure the vulnera-
bility of [deep learning] models” and “conduct comparative
studies on attacks/defenses“ [?]. To do this, the DEEPSEC
framework implements many common attacks and defenses
with a consistent interface. Ling et al. then use this to “sys-
tematically evaluate the existing adversarial attack and defense
methods” [?].

The research community would be well served by such an
analysis. When new defenses are proposed, authors must
choose which set of attacks to apply in order to perform an
evaluation. A systematic evaluation of which attacks have been
most effective in the past could help inform the decision of
which attacks should be tried in the future. Similarly, when
designing new attacks, a comprehensive review of defenses
could help researchers decide which defenses to test against.

Unfortunately, the analysis performed in the DEEPSEC report
is fundamentally flawed and does not achieve any of these
goals. It neither accurately measures the power of attacks not
measures the efficacy of defenses. This report summarizes the
many ways in which the report is misleading in its results.
Performing a correct systematic evaluation of existing attacks
and defenses is still an open problem which future work will
need to address (perhaps even using the DEEPSEC evaluation
framework).

The fact that this paper was accepted at IEEE Symposium on
Security and Privacy (one of the premire venues for publishing
computer security research) seriously calls into question the
ability of this conference to accurately assess the quality of
adversarial machine learning research.

II. CRITIQUE OF THE DEEPSEC EVALUATION

While the objective that DEEPSEC sets out to solve is laudible,
the actual analysis performed is fundamentally flawed and

incorrect in many ways. This section discusses a few of
the aspects in which it errs in detail; we do not attempt to
exhaustively enumerate all the problems.

A. DEEPSEC Code and Framework Flaws

It is exceptionally important when re-implementing prior work
to ensure correctness of the reproduction. Unfortunately, we
find significant flaws in the authors implementation of FGSM
[?] (one of the first and simplest attack approaches) and PGD
adversarial training [?] (a simple idea that is notoriously hard
to get right in practice).

FGSM implementation is incorrect. Despite the simplicity
of the Fast Gradient Sign Method [cite], it is surprisingly
effective at generating adversarial examples on unsecured
models. However, Table XIV reports the misclassification rate
of FGSM at ε = 0.3 on MNIST as 30.4%, significantly less
effective than we expected given the results of prior work.

Fortunately, because the authors release their code1, we are
able to investigate this further. We take the authors code and
run the the one-line script as described in the README to
run the FGSM attack on the baseline MNIST model. Doing
this yields a misclassification rate of 38.3% PLUSORMINUS
TODO. 2 It is mildly concerning that this number is 25% larger
than the value reported in the paper, and we are unable to
account for this statistically significant deviation from what the
code returns. However, this error is only of secondary concern:
as prior work indicates, the success rate of FGSM should be
substantially higher.

We therefore compare to the result of attacking with the
CleverHans [] framework. Because DEEPSEC is implemented
in PyTorch, and CleverHans only supports TensorFlow, we
load the DEEPSEC pre-trained PyTorch model weights into
a TensorFlow model3 and generate adversarial examples on
this model with the CleverHans [] implementation of FGSM.
CleverHans obtains a 61% misclassification rate–over double
the misclassification rate reported in the DEEPSEC paper. To
confirm the results that we obtain are correct we save these
adversarial examples and run the original DEEPSEC PyTorch
model on them, again finding the misclassification rate is 61%.

1TODO
2We compute the confidence interval at 95% by running the attack 100

times. The resulting distribution over misclassification rates is approximately
normal and so it is therefore meaningful to report the confidence interval as
two standard deviations.

3To validate that this process does not change functionality, we verify that
the models agree on every example in the training and testing set not only
in prediction, but in the confidence of their predictions. We observe 100%
(perfect) agreement.



We are at this time unable to explain how DEEPSEC incorrectly
implemented FGSM, however the fact the simplest attack is
implemented incorrectly is deeply concerning.

We release our code 4 which demonstrates this error.

The remainder of this commentary on DEEPSEC therefore
discusses only the methodology and analysis, and not any
specific numbers which may or may not be trustworthy.

PGD adversarial training is implemented incorrectly. While
the idea of adversarial training is straightforward—generate
adversarial examples during training and train on those ex-
amples until the model learns to classify them correctly— in
practice it is difficult to get right. The basic idea has been
independently developed at least twice TODO cite and was
the focus of several papers TODO CITE before all of the right
ideas were combined by Madry et al. to form the strongest
defense to date [?]. We identify at least three flaws in the
re-implementation of this defense after a cursory analysis:

• Incorrect loss function. The loss function used in the
original paper is TODO whereas this paper mixes ad-
versarial examples and original examples to form the
loss TODO. The authors do not justify this decision.

• Incorrect model architectures. In the original paper,
the authors make three claims for the novelty of
their method. One of these claims states “To reliably
withstand strong adversarial attacks, networks require
a significantly larger capacity than for correctly clas-
sifying benign examples only.” [?] The code that re-
implements this defense does not follow this advice
and instead uses a substantially smaller model than
recommended. The authors do not justify this decision.

• Incorrect hyperparameter settings. The original
paper trains their MNIST model for 83 epochs of
training; In contrast, the authors here train for only
20 epochs (4× fewer iterations). The authors do not
justify this decision.

Possibly because of these implementation differences, the
DEEPSEC report finds (incorrectly) that a more basic form
of adversarial training performs better than PGD adversarial
training.

We did not review the re-implementation of any of the other
defenses; the fact that we do not report any other issues is not
because there are or are not further issues

B. Methodological Flaws

The methodology of the evaluation contains significant flaws
that severly limit ones ability to draw any meaningful conclu-
sions.

Attacks are not run on defenses in an all-pairs manner.
The only meaningful metric for evaluating a defense is by
measuring the effictiveness of attacks which run against it.

As a point of comparison, imagine that I were designing a new
computer architecture that was designed to be secure memory
corruption vulnerabilities. I do this by taking a pre-existing

4TODO

computer architecture and instead of designing it as little-
endian or big-endian, implement some new “middle-endian”
where the least significant byte is put in the middle of the
word. This crazy new architecture would appear to be perfectly
robust against all existing malware. However it would be
fundamentally incorrect to call this new computer architecture
“more secure”: the only thing that we have done is superficially
broken existing exploits from working on our new system.

This basic flaw completely undermines the purpose of a
security evaluation. Notice that this type of analysis is not
useless and does tell us something: the analysis performed
tells us something useful about the ability for these attacks to
transfer [?] and for the models to defend against transferability
attacks [?]. If the authors had made this observation and
drawn the conclusions from this perspective, then at least the
fundamental idea behind the table would have been correct.
(None of the following errors would be resolved, still.)

However, it is, TODO.

Even worse, the DEEPSEC code itself does not support the
ability to run any of the attacks on a new defense model.
While the code TODO

Security analysis violates threat models of defenses. Most
defenses contain a threat model as a statement of the conditions
under which they attempt to be secure.

Attack analysis improperly measures distortions not being
optimized for. Most defenses contain a threat model as a
statement of the conditions under which they attempt to be
secure.

Discrepencies between tables, text, and code. The paper
contains numerous discrepencies between the code and con-
stants given with the paper. For example, Table XIII states
that on CIFAR-10 the R+FGSM attack [] was executed with
ε = 0.05 and α = 0.05 for CIFAR-10 whereas the README
in the Attack module of the open source code suggests ε = 0.1
and α = 0.5. Table XIII states that the “box” constraint for
CWL2 is set to −0.5, 0.5 but in the code the (correct) values
of 0.0, 1.0 are used. Other hyperparameters are completely
missing (e.g., number Table XIII does not give the number
of iterations used for any of the gradient-based attacks). This
is especially confusing when the default values differ from the
original attack implementations; for example, this code sets
the number of binary search steps for CW2 to 5 (and does not
state this in the paper) whereas the original code uses the value
10; fortunately, this setting often has only a minimal impact
on accuracy.

Epsilon values studied are too large to be meaningful. On
at least two counts the authors chose l∞ distortion bounds that
are not well motivated.

• Throughout the paper the authors study a CIFAR-10
distortion of ε = 0.1 and ε = 0.2. This value is 3×
(or 6×) larger than what is typically studied in the
literature. CIFAR-10 images that are perturbed with
noise of distortion 0.1 are often difficult for humans
to correctly classify; we are aware of no other work
which studies CIFAR-10 robustness at this extremely
high distortion bound.
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• The authors study l∞ distortion bounds as high as
ε = 0.6 in Table VII on both MNIST and CIFAR-10,
a value that is so high that any image can be converted
to solid grey (and then past). The entire purpose of
bounding the l∞ norm of adversarial examples is to
ensure that the actual true class has not changed.
Choosing a distortion bound so large that all images
can be converted to a solid grey image fundamentally
misunderstands the purpose of the distortion bound.

Detection defenses set per-attack thresholds. In Table VI
the authors analyze three different defense techniques. In this
table, the authors report the true positive rate and false positive
rate of the defenses against various attacks. In doing so, the
authors vary the detection threshold on a per-attack basis:

“we try our best to adjust the FPR values of all
detection methods to the same level via fine-tuning
the parameters.”

When performing a security analysis between the attacker and
defender it is always important to recognize that one of the
players goes first and commits to an approach, and then the
second player goes second and tries to defeat the other. In
working with adversarial example defenses, it is the defender
who commits first [?] and the attacker who then tries to find
instance that evades the defense.

As such, it is meaningless to allow the defender to alter the
detection hyperparameters depending on which attack will be
encountered. If the defender knew which attack was going to
be presented, they could do much better than just selecting a
different hyperparameter setting for the detection threshold.

Even still, despite this claim that the authors normalize the
detection rate to be “the same level”, in actuality the false
positive rates presented in the table vary between 1.5% and
9.0%. Comparing the true positive rate of two defenses when
the corresponding false positive vary by a factor of six is
meaningless. Worse yet, computing the mean TPR across a
range of attacks when the FPR by a factor of six results in a
completely uninterprable value.

Attack success rate decreases with distortion bound. It is
a basic observation that when given strictly more power, the
adversary should never do worse. However, in Table VII the
authors report that MNIST adversarial examples with their l∞
norm constrained to be less than 0.2 are harder to detect
than when constrained to be within 0.5. The reason this table
shows this effect is that FGSM, a single-step method, is used
to generate these adversarial examples.

Reporting success rate of unbounded attacks is meaningless.
Two of the attacks presented (EAD TODO and CW2 TODO
BLB TODO) are unbounded attacks: rather than finding the
“worst-case” (i.e., highest loss) example within some distortion
bound, they seek to find the closest input subject to the
constraint that it is misclassified. Unbounded attacks should
always reach 100% “success” eventually, if only by actually
changing an image from one class into an image from the
other class; the correct and meaningful metric to report for
unbounded attacks is the distortion required.

C. Analysis Flaws

The DEEPSEC report relies on averages for summarizing
results, instead of the minimum or maximum. Perhaps the
one key factor that differentiates security (and adversarial
robustness) from other general forms of robustness is the
worst-case mindset from which we evaluate.

Using the mean over various attacks to compute the “security”
of a defense completely misunderstands what it means to
perform a security evaluation in the first place. For example,
the authors bold the column for the NAT defense [?] when
evaluated on CIFAR-10 because it gives the highest “average
security” against all attacks. However, this is fundamentally the
incorrect evaluation to make: the only metric that matters in
security is how well a defense witstands attacks targeting that
defense. And in this setting, the alternate adversarial training
approach of Madry et al. [cite] is strictly stronger. 5

“According to the results, LID has the highest average TPRa-
gainst all kinds of AEs.” (IV. C. 2, p.10) WHAT IS THE
AVERAGE FOR?!?

Computing the average over different threat models is
meaningless. In essence, the authors commiting one of the
most elementary flaws in mathematics and forgetting the units.

The DEEPSEC report evaluates model accuracy, not attack
success rate, for targeted adversarial examples. TODO

Within one threat model, comparing attack effictiveness is
done incorrectly. Using the data provided, it is not possible
to compare the efficacy of different attacks across models.
Imagine we would like to decide whether LLC or ILLC was
the stronger attack.

Superficially, we might look at the “Average” column and see
that the average model accuracy under LLC is 39.4% compared
to 58.7% accuracy under ILLC. However, as discussed earlier
computing averages over different defenses is meaningless.
Fortunately, we can observe that on all models except one,
LLC reduces the model accuracy more than ILLC does, often
by over twenty percentage points.

Areasonable reader might therefore conclude (incorrectly!) that
LLC is the stronger attack. Why is this conclusion incorrect?
The LLC attack only succeeded 134 times out of 1000 times
on the baseline CIFAR-10 model. Therefore, when the authors
write that the accuracy of PGD adversarial training under LLC
is 61.2% what this number means is that 38.8% of adversarial
examples that are effective on the baseline model are also
effective on the adversarially trained model. How the model
would perform on the other 866 examples is not reported. In
contrast, when the model is evaluated on the ILLC attack,
because this attack succeeded on all 1000 examples for the
baseline model, the 83.7 accuracy obtained by adversarial
training is inherently incomparable to the the 61.2% value.

Average model accuracy under different attacks imply
weak attacks are strong. Average column of Table V makes
it look like FGSM is the best attack.

5TODO can I get alex to agree.
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D. Comments on the Conclusions Drawn

“L∞ attacks are much more transferable than others (i.e., L2

and L0 attacks).” Only one L0 attack.

most defense-enhanced models increase theirclassi-
fication accuracy against existing attacks (IV. C. 1,
p.9)

“Although there have been many sophisticated defenses and
strong attacks, it is still an open problem whether or to what
extent the state-of-the-art defenses can defend against attacks.”
(IV. C., p.9)

“we suggest that all state-of-the-art defenses are more or less
effective against existing attacks.” (IV. C. 2, p.9)

“It is not the case that AEs with high magnitudeof perturbation
are easier to be detected.” (IV. C. 2, p.10)

“All detection methods show comparable discrimi-native abil-
ity against existing attacks.” (IV. C. 2, p.10)

III. CONCLUSION

Researchers who set out to reproduce prior work must hold
themselves to an exceptionally high standard. Because survey
papers hold significant power impact the communities knowl-
edge base (especially when accepted for publication at first-
rate conferences), researchers reproducing prior work must
ensure that the results are accurate in order to not promote
misinformation. Unfortunately, the analysis of DEEPSEC [?]
falls far below the necessary bar and makes significant and
fundamental flaws across all areas of its evaluation.

While the motivation behind the DEEPSEC framework is
TODO, The overall high-level approach to begin with is
incorrect by design: by not actually running each attack on the
corresponding defense, TODO. Worse yet, the implementations
of even the simplest attacks and defenses appears incorrect.
Even putting that oversight aside, by using the average case
efficacy of attacks and defenses to draw conclusions, TODO.

Future work should not follow the evaluation approach taken
by this paper. The analysis results of Tables V, VI, and
VII should be completely disregarded except insofar as they
analyze the transferability of adversarial examples. Most of the
conclusions drawn from the analysis are false (e.g., while the
authors claim that “all state-ofthe-art defenses are more or less
effective against existing attacks” TODO) .

Improperly performed experiments are worse than experiments
not performed.
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