
Hidden Voice Commands

Nicholas Carlini∗

University of California, Berkeley

Pratyush Mishra
University of California, Berkeley

Tavish Vaidya
Georgetown University

Yuankai Zhang
Georgetown University

Micah Sherr
Georgetown University

Clay Shields
Georgetown University

David Wagner
University of California, Berkeley

Wenchao Zhou
Georgetown University

Abstract

Voice interfaces are becoming more ubiquitous and are

now the primary input method for many devices. We ex-

plore in this paper how they can be attacked with hidden

voice commands that are unintelligible to human listen-

ers but which are interpreted as commands by devices.

We evaluate these attacks under two different threat

models. In the black-box model, an attacker uses the

speech recognition system as an opaque oracle. We show

that the adversary can produce difficult to understand

commands that are effective against existing systems in

the black-box model. Under the white-box model, the

attacker has full knowledge of the internals of the speech

recognition system and uses it to create attack commands

that we demonstrate through user testing are not under-

standable by humans.

We then evaluate several defenses, including notify-

ing the user when a voice command is accepted; a verbal

challenge-response protocol; and a machine learning ap-

proach that can detect our attacks with 99.8% accuracy.

1 Introduction

Voice interfaces to computer systems are becoming ubiq-

uitous, driven in part by their ease of use and in part by

decreases in the size of modern mobile and wearable de-

vices that make physical interaction difficult. Many de-

vices have adopted an always-on model in which they

continuously listen for possible voice input. While voice

interfaces allow for increased accessibility and poten-

tially easier human-computer interaction, they are at the

same time susceptible to attacks: Voice is a broadcast

channel open to any attacker that is able to create sound

within the vicinity of a device. This introduces an op-

portunity for attackers to try to issue unauthorized voice

commands to these devices.

An attacker may issue voice commands to any device

that is within speaker range. However, naı̈ve attacks will

be conspicuous: a device owner who overhears such a

∗Authors listed alphabetically, with student authors appearing be-

fore faculty authors.

command may recognize it as an unwanted command

and cancel it, or otherwise take action. This motivates

the question we study in this paper: can an attacker cre-

ate hidden voice commands, i.e., commands that will be

executed by the device but which won’t be understood

(or perhaps even noticed) by the human user?

The severity of a hidden voice command depends upon

what commands the targeted device will accept. De-

pending upon the device, attacks could lead to informa-

tion leakage (e.g., posting the user’s location on Twitter),

cause denial of service (e.g., activating airplane mode),

or serve as a stepping stone for further attacks (e.g.,

opening a web page hosting drive-by malware). Hid-

den voice commands may also be broadcast from a loud-

speaker at an event or embedded in a trending YouTube

video, compounding the reach of a single attack.

Vaidya et al. [41] showed that hidden voice commands

are possible—attackers can generate commands that are

recognized by mobile devices but are considered as noise

by humans. Building on their work, we show more pow-

erful attacks and then introduce and analyze a number of

candidate defenses.

The contributions of this paper include the following:

• We show that hidden voice commands can be con-

structed even with very little knowledge about the

speech recognition system. We provide a general

attack procedure for generating commands that are

likely to work with any modern voice recognition

system. We show that our attacks work against

Google Now’s speech recognition system and that

they improve significantly on previous work [41].

• We show that adversaries with significant knowl-

edge of the speech recognition system can construct

hidden voice commands that humans cannot under-

stand at all.

• Finally, we propose, analyze, and evaluate a suite

of detection and mitigation strategies that limit the

effects of the above attacks.

Audio files for the hidden voice commands and

a video demonstration of the attack are available at

http://hiddenvoicecommands.com.

1

http://hiddenvoicecommands.com

Pre‐processing Feature
Extraction

Model‐based
Prediction

Post‐processing

Filtered
audio signal

Audio
features

Text
prediction

Speech recognition system

Input
audio
signal

Text
output

Figure 1: Overview of a typical speech recognition system.

2 Background and Related Work

To set the stage for the attacks that we present in §3 and

§4, we briefly review how speech recognition works.

Figure 1 presents a high-level overview of a typi-

cal speech recognition procedure, which consists of the

following four steps: pre-processing, feature extrac-

tion, model-based prediction, and post-processing. Pre-

processing performs initial speech/non-speech identifi-

cation by filtering out frequencies that are beyond the

range of a human voice and eliminating time periods

where the signal energy falls below a particular thresh-

old. This step only does rudimentary filtering, but still al-

lows non-speech signals to pass through the filter if they

pass the energy-level and frequency checks.

The second step, feature extraction, splits the filtered

audio signal into short (usually around 20 ms) frames and

extracts features from each frame. The feature extraction

algorithm used in speech recognition is almost always

the Mel-frequency cepstral (MFC) transform [20, 42].

We describe the MFC transform in detail in Appendix A,

but at a high level it can be thought of as a transformation

that extracts the dominant frequencies from the input.

The model-based prediction step takes as input the ex-

tracted features, and matches them against an existing

model built offline to generate text predictions. The tech-

nique used in this step can vary widely: some systems

use Hidden Markov Models, while many recent systems

have begun to use recurrent neural networks (RNNs).

Finally, a post-processing step ranks the text predic-

tions by employing additional sources of information,

such as grammar rules or locality of words.

Related work. Unauthorized voice commands have

been studied by Diao et al. [12] and Jang et al. [21] who

demonstrate that malicious apps can inject synthetic au-

dio or play commands to control smartphones. Unlike in

this paper, these attacks use non-hidden channels that are

understandable by a human listener.

Similar to our work, Kasmi and Lopes Esteves [23]

consider the problem of covert audio commands. There,

the authors inject voice commands by transmitting FM

signals that are received by a headset. In our work, we

do not require the device to have an FM antenna (which

is not often present) and we obfuscate the voice com-

mand so that it is not human-recognizable. Schlegel et al.

[36] show that malicious apps can eavesdrop and record

phone calls to extract sensitive information. Our work

differs in that it exploits targeted devices’ existing func-

tionality (i.e., speech recognition) and does not require

the installation of malicious apps.

Earlier work by Vaidya et al. [41] introduces obfus-

cated voice commands that are accepted by voice inter-

faces. Our work significantly extends their black-box

approach by (i) evaluating the effectiveness of their

attacks under realistic scenarios, (ii) introducing more

effective “white-box” attacks that leverage knowledge

of the speech recognition system to produce machine-

understandable speech that is almost never recognized by

humans, (iii) formalizing the method of creating hidden

voice commands, and (iv) proposing and evaluating de-

fenses.

Image recognition systems have been shown to be vul-

nerable to attacks where slight modifications to only a

few pixels can change the resulting classification dramat-

ically [17, 19, 25, 38]. Our work has two key differences.

First, feature extraction for speech recognition is signif-

icantly more complex than for images; this is one of the

main hurdles for our work. Second, attacks on image

recognition have focused on the case where the adversary

is allowed to directly modify the electronic image. In

contrast, our attacks work “over the air”; that is, we cre-

ate audio that when played and recorded is recognized as

speech. The analogous attack on image recognition sys-

tems would be to create a physical object which appears

benign, but when photographed, is classified incorrectly.

As far as we know, no one has demonstrated such an at-

tack on image recognition systems.

More generally, our attacks can be framed as an eva-

sion attack against machine learning classifiers: if f is

a classifier and A is a set of acceptable inputs, given a

desired class y, the goal is to find an input x ∈ A such

that f (x) = y. In our context, f is the speech recognition

system, A is a set of audio inputs that a human would not

recognize as speech, and y is the text of the desired com-

mand. Attacks on machine learning have been studied

extensively in other contexts [1, 4, 5, 10, 13, 22, 31, 40];

In particular, Fawzi et al. [14] develop a rigorous frame-

work to analyze the vulnerability of various types of clas-

sifiers to adversarial perturbation of inputs. They demon-

strate that a minimal set of adversarial changes to input

data is enough to fool most classifiers into misclassify-

ing the input. Our work is different in two key respects:

(i) the above caveats for image recognition systems still

apply, and moreover, (ii) their work does not necessarily

aim to create inputs that are misclassified into a partic-

ular category; but rather that it is just misclassified. On

the other hand, we aim to craft inputs that are recognized

as potentially sensitive commands.

2

Finally, Fredrikson et al. [15] attempt to invert ma-

chine learning models to learn private and potentially

sensitive data in the training corpus. They formulate their

task as an optimization problem, similar to our white-box

approach, but they (i) test their approach primarily on im-

age recognition models, which, as noted above, are easier

to fool, and (ii) do not aim to generate adversarial inputs,

but rather only extract information about individual data

points.

3 Black-box Attacks

We first show that under a weak set of assumptions an at-

tacker with no internal knowledge of a voice recognition

system can generate hidden voice commands that are dif-

ficult for human listeners to understand. We refer to these

as obfuscated commands, in contrast to unmodified and

understandable normal commands.

These attacks were first proposed by Vaidya et al. [41].

This section improves upon the efficacy and practicality

of their attacks and analysis by (i) carrying out and test-

ing the performance of the attacks under more practical

settings, (ii) considering the effects of background noise,

and (iii) running the experiments against Google’s im-

proved speech recognition service [34].

3.1 Threat model & attacker assumptions

In this black-box model the adversary does not know

the specific algorithms used by the speech recognition

system. We assume that the system extracts acoustic

information through some transform function such as

an MFC, perhaps after performing some pre-processing

such as identifying segments containing human speech

or removing noise. MFCs are commonly used in current-

generation speech recognition systems [20, 42], making

our results widely applicable, but not limited to such sys-

tems.

We treat the speech recognition system as an oracle to

which the adversary can pose transcription tasks. The ad-

versary can thus learn how a particular obfuscated audio

signal is interpreted. We do not assume that a particular

transcription is guaranteed to be consistent in the future.

This allows us to consider speech recognition systems

that apply randomized algorithms as well as to account

for transient effects such as background noise and envi-

ronmental interference.

Conceptually, this model allows the adversary to iter-

atively develop obfuscated commands that are increas-

ingly difficult for humans to recognize while ensuring,

with some probability, that they will be correctly inter-

preted by a machine. This trial-and-error process occurs

in advance of any attack and is invisible to the victim.

Feature
Extraction

Inverse MFCC

Acoustic
features

Normal
command

Candidate
obfuscated command

Speech
recognition system

MFCC
parameters

Recognized

by machine?

Recognized

by human

attacker?

Attacker

yes

no
Obfuscated
command

1

2 3

4

5

6

yes

7

no8

Figure 2: Adversary’s workflow for producing an obfuscated

audio command from a normal command.

3.2 Overview of approach

We rerun the black-box attack proposed by Vaidya et

al. [41] as shown in Figure 2. The attacker’s goal is to

produce an obfuscated command that is accepted by the

victim’s speech recognition system but is indecipherable

by a human listener.

The attacker first produces a normal command that

it wants executed on the targeted device. To thwart

individual recognition the attacker may use a text-to-

speech engine, which we found is generally correctly

transcribed. This command is then provided as input

(Figure 2, step ❶) to an audio mangler, shown as the grey

box in the figure. The audio mangler performs an MFC

with a starting set of parameters on the input audio, and

then performs an inverse MFC (step ❷) that additionally

adds noise to the output. By performing the MFC and

then inverting the obtained acoustic features back into an

audio sample, the attacker is in essence attempting to re-

move all audio features that are not used in the speech

recognition system but which a human listener might use

for comprehension.

Since the attacker does not know the MFC features

used by the speech recognition system, experimentation

is required. First, the attacker provides the candidate

obfuscated audio that results from the MFC→inverse-

MFC process (step ❸) to the speech recognition system

(step ❹). If the command is not recognized then the at-

tacker must update the MFC parameters to ensure that

the result of the MFC→inverse-MFC transformation will

yield higher fidelity audio (step ❺).

If the candidate obfuscated audio is interpreted cor-

rectly (step ❻), then the human attacker tests if it is hu-

man understandable. This step is clearly subjective and,

worse, is subject to priming effects [28] since the at-

tacker already knows the correct transcription. The at-

tacker may solicit outside opinions by crowdsourcing.

If the obfuscated audio is too easily understood by hu-

mans the attacker discards the candidate and generates

new candidates by adjusting the MFC parameters to pro-

duce lower fidelity audio (step ❼). Otherwise, the can-

3

Table 1: MFC parameters tuned to produce obfuscated audio.

Parameter Description

wintime time for which the signal is considered constant

hoptime time step between adjacent windows

numcep number of cepstral coefficients

nbands no. of warped spectral bands for aggregating energy levels

didate obfuscated audio command—which is recognized

by machines but not by humans—is used to conduct the

actual attack (step ❽).

3.3 Experimental setup

We obtained the audio mangling program used by

Vaidya et al. [41]. Conforming to their approach, we also

manually tune four MFC parameters to mangle and test

audio using the workflow described in §3.2 to determine

the ranges for human and machine perception of voice

commands. The list of modified MFC parameters is pre-

sented in Table 1.

Our voice commands consisted of the phrases “OK

google”, “call 911”, and “turn on airplane mode”. These

commands were chosen to represent a variety of po-

tential attacks against personal digital assistants. Voice

commands were played using Harmon Kardon speakers,

model number HK695–01,13, in a conference room mea-

suring approximately 12 by 6 meters, 2.5 meters tall.

Speakers were on a table approximately three meters

from the phones. The room contained office furniture

and projection equipment. We measured a background

noise level (Pnoise
dB) of approximately 53 dB.

We tested the commands against two smart phones, a

Samsung Galaxy S4 running Android 4.4.2 and Apple

iPhone 6 running iOS 9.1 with Google Now app ver-

sion 9.0.60246. Google’s recently updated [34] default

speech recognition system was used to interpret the com-

mands. In the absence of injected ambient background

noise, our sound level meter positioned next to the smart-

phones measured the median intensity of the voice com-

mands to be approximately 88 dB.

We also projected various background noise samples

collected from SoundBible [9], recorded from a casino,

classroom, shopping mall, and an event during which ap-

plause occurred. We varied the volume of these back-

ground noises—thus artificially adjusting the signal-to-

noise ratio—and played them through eight overhead

JBL in-ceiling speakers. We placed a Kinobo “Akiro”

table mic next to our test devices and recorded all audio

commands that we played to the devices for use in later

experiments, described below.

3.4 Evaluation

Attack range. We found that the phone’s speech

recognition system failed to identify speech when the

speaker was located more than 3.5 meters away or when

the perceived SNR was less than 5 dB. We conjecture

that the speech recognition system is designed to discard

far away noises, and that sound attenuation further limits

the attacker’s possible range. While the attacker’s local-

ity is clearly a limitation of this approach, there are many

attack vectors that allow the attacker to launch attacks

within a few meters of the targeted device, such as obfus-

cated audio commands embedded in streaming videos,

overhead speakers in offices, elevators, or other enclosed

spaces, and propagation from other nearby phones.

Machine understanding. Table 2 shows a side-by-

side comparison of human and machine understanding,

for both normal and obfuscated commands.

The “machine” columns indicate the percentage of

trials in which a command is correctly interpreted by

the phone, averaged over the various background noises.

Here, our sound meter measured the signal’s median au-

dio level at 88 dB and the background noise at 73 dB,

corresponding to a signal-to-noise ratio of 15 dB.

Across all three commands, the phones correctly inter-

preted the normal versions 85% of the time. This accu-

racy decreased to 60% for obfuscated commands.

We also evaluate how the amplitude of background

noise affects machine understanding of the commands.

Figure 3 shows the percentage of voice commands that

are correctly interpreted by the phones (“success rate”)

as a function of the SNR (in dB) using the Mall back-

ground noise. Note that a higher SNR denotes more

favorable conditions for speech recognition. Generally,

Google’s speech recognition engine correctly transcribes

the voice commands and activates the phone. The ac-

curacy is higher for normal commands than obfuscated

commands, with accuracy improving as SNR increases.

In all cases, the speech recognition system is able to per-

fectly understand and activate the phone functionality in

at least some configurations—that is, all of our obfus-

cated audio commands work at least some of the time.

With little background noise, the obfuscated commands

work extremely well and are often correctly transcribed

at least 80% of the time. Appendix B shows detailed re-

sults for additional background noises.

Human understanding. To test human understand-

ing of the obfuscated voice commands, we conducted a

study on Amazon Mechanical Turk1, a service that pays

1Note on ethics: Before conducting our Amazon Mechanical Turk

experiments, we submitted an online application to our institution’s

IRB. The IRB responded by stating that we were exempt from IRB.

Irrespective of our IRB, we believe our experiments fall well within the

4

Table 2: Black-box attack results. The “machine” columns report the percentage of commands that were correctly interpreted by

the tested smartphones. The percentage of commands that were correctly understood by humans (Amazon Turk workers) is shown

under the “human” columns. For the latter, the authors assessed whether the Turk workers correctly understood the commands.

Ok Google Turn on airplane mode Call 911

Machine Human Machine Human Machine Human

Normal 90% (36/40) 89% (356/400) 75% (30/40) 69% (315/456) 90% (36/40) 87% (283/324)

Obfuscated 95% (38/40) 22% (86/376) 45% (18/40) 24% (109/444) 40% (16/40) 94% (246/260)

0 5 10 15 20 25 30 35 40
SNR

0.0

0.2

0.4

0.6

0.8

1.0

M
al

l
Su

cc
es

s
Ra

te

OK Google

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40
SNR

0.0

0.2

0.4

0.6

0.8

1.0
Turn on Airplane Mode

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40
SNR

0.0

0.2

0.4

0.6

0.8

1.0
Call 911

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

Figure 3: Machine understanding of normal and obfuscated variants of “OK Google”, “Turn on Airplane Mode”, and “Call 911”

voice commands under Mall background noise. Each graph shows the measured average success rate (the fraction of correct

transcripts) on the y-axis as a function of the signal-to-noise ratio.

human workers to complete online tasks called Human

Intelligence Tasks (HITs). Each HIT asks a user to tran-

scribe several audio samples, and presents the following

instructions: “We are conducting an academic study that

explores the limits of how well humans can understand

obfuscated audio of human speech. The audio files for

this task may have been algorithmically modified and

may be difficult to understand. Please supply your best

guess to what is being said in the recordings.”

We constructed the online tasks to minimize priming

effects—no worker was presented with both the normal

and obfuscated variants of the same command. Due to

this structuring, the number of completed tasks varies

among the commands as reflected in Table 2 under the

“human” columns.

We additionally required that workers be over 18 years

of age, citizens of the United States, and non-employees

of our institution. Mechanical Turk workers were paid

$1.80 for completing a HIT, and awarded an additional

$0.20 for each correct transcription. We could not pre-

vent the workers from replaying the audio samples mul-

tiple times on their computers and the workers were in-

centivized to do so, thus our results could be considered

conservative: if the attacks were mounted in practice, de-

vice owners might only be able to hear an attack once.

basic principles of ethical research. With respect in particular to benef-

icence, the Mechanical Turk workers benefited from their involvement

(by being compensated). The costs/risks were extremely low: workers

were fully informed of their task and no subterfuge occurred. No per-

sonal information—either personally identifiable or otherwise—was

collected and the audio samples consisted solely of innocuous speech

that is very unlikely to offend (e.g., commands such as “OK Google”).

To assess how well the Turk workers understood nor-

mal and obfuscated commands, four of the authors com-

pared the workers’ transcriptions to the correct transcrip-

tions (e.g., “OK Google”) and evaluated whether both

had the same meaning. Our goal was not to assess

whether the workers correctly heard the obfuscated com-

mand, but more conservatively, whether their perception

conformed with the command’s meaning. For example,

the transcript “activate airplane functionality” indicates a

failed attack even though the transcription differs signif-

icantly from the baseline of “turn on airplane mode”.

Values shown under the “human” columns in Table 2

indicate the fraction of total transcriptions for which the

survey takers believed that the Turk worker understood

the command. Each pair of authors had an agreement

of over 95% in their responses, the discrepancies being

mainly due to about 5% of responses in which one survey

taker believed they matched but the others did not. The

survey takers were presented only with the actual phrase

and transcribed text, and were blind to whether or not the

phrase was an obfuscated command or not.

Turk workers were fairly adept (although not perfect)

at transcribing normal audio commands: across all com-

mands, we assessed 81% of the Turkers’ transcripts to

convey the same meaning as the actual command.

The workers’ ability to understand obfuscated audio

was considerably less: only about 41% of obfuscated

commands were labeled as having the same meaning

as the actual command. An interesting result is that

the black-box attack performed far better for some com-

mands than others. For the “Ok Google” command, we

5

decreased human transcription accuracy fourfold without

any loss in machine understanding.

“Call 911” shows an anomaly: human understand-

ing increases for obfuscated commands. This is due to

a tricky part of the black-box attack workflow: the at-

tacker must manage priming effects when choosing an

obfuscated command. In this case, we believed the “call

911” candidate command to be unintelligible; these re-

sults show we were wrong. A better approach would

have been to repeat several rounds of crowdsourcing to

identify a candidate that was not understandable; any at-

tacker could do this. It is also possible that among our

US reviewers, “call 911” is a common phrase and that

they were primed to recognize it outside our study.

Objective measures of human understanding: The

analysis above is based on the authors’ assessment of

Turk workers’ transcripts. In Appendix C, we present

a more objective analysis using the Levenshtein edit dis-

tance between the true transcript and the Turkers’ tran-

scripts, with phonemes as the underlying alphabet.

We posit that our (admittedly subjective) assessment is

more conservative, as it directly addresses human under-

standing and considers attacks to fail if a human under-

stands the meaning of a command; in contrast, compar-

ing phonemes measures something slightly different—

whether a human is able to reconstruct the sounds of

an obfuscated command—and does not directly capture

understanding. Regardless, the phoneme-based results

from Appendix C largely agree with those presented

above.

4 White-box Attacks

We next consider an attacker who has knowledge of the

underlying voice recognition system. To demonstrate

this attack, we construct hidden voice commands that

are accepted by the open-source CMU Sphinx speech

recognition system [24]. CMU Sphinx is used for speech

recognition by a number of apps and platforms2, mak-

ing it likely that these whitebox attacks are also practical

against these applications.

4.1 Overview of CMU Sphinx

CMU Sphinx uses the Mel-Frequency Cepstrum (MFC)

transformation to reduce the audio input to a smaller di-

mensional space. It then uses a Gaussian Mixture Model

(GMM) to compute the probabilities that any given piece

of audio corresponds to a given phoneme. Finally, using

a Hidden Markov Model (HMM), Sphinx converts the

phoneme probabilities to words.

2Systems that use CMU Sphinx speech recognition include the

Jasper open-source personal digital assistant and Gnome Desktop voice

commands. The Sphinx Project maintains a list of software that uses

Sphinx at http://cmusphinx.sourceforge.net/wiki/sphinxinaction.

The purpose of the MFC transformation is to take a

high-dimensional input space—raw audio samples—and

reduce its dimensionality to something which a machine

learning algorithm can better handle. This is done in two

steps. First, the audio is split into overlapping frames.

Once the audio has been split into frames, we run the

MFC transformation on each frame. The Mel-Frequency

Cepstrum Coefficients (MFCC) are the 13-dimensional

values returned by the MFC transform.

After the MFC is computed, Sphinx performs two fur-

ther steps. First, Sphinx maintains a running average of

each of the 13 coordinates and subtracts off the mean

from the current terms. This normalizes for effects such

as changes in amplitude or shifts in pitch.

Second, Sphinx numerically estimates the first

and second derivatives of this sequence to create

a 39-dimensional vector containing the original 13-

dimensional vector, the 13-dimensional first-derivative

vector, and the 13-dimensional-second derivative vector.

Note on terminology: For ease of exposition and clar-

ity, in the remainder of this section, we call the output

of the MFCC function 13-vectors, and refer to the output

after taking derivatives as 39-vectors.

The Hidden Markov Model. The Sphinx HMM acts

on the sequence of 39-vectors from the MFCC. States in

the HMM correspond to phonemes, and each 39-vector

is assigned a probability of arising from a given phoneme

by a Gaussian model, described next. The Sphinx HMM

is, in practice, much more intricate: we give the complete

description in Appendix A.

The Gaussian Mixture Model. Each HMM state

yields some distribution on the 39-vectors that could be

emitted while in that state. Sphinx uses a GMM to repre-

sent this distribution. The GMMs in Sphinx are a mixture

of eight Gaussians, each over R39. Each Gaussian has a

mean and standard deviation over every dimension. The

probability of a 39-vector v is the sum of the probabili-

ties from each of the 8 Gaussians, divided by 8. For most

cases we can approximate the sum with a maximization,

as the Gaussians typically have little overlap.

4.2 Threat model

We assume the attacker has complete knowledge of the

algorithms used in the system and can interact with them

at will while creating an attack. We also assume the at-

tacker knows the parameters used in each algorithm. 3

We use knowledge of the coefficients for each Gaus-

sian in the GMM, including the mean and standard de-

viation for each dimension and the importance of each

3Papernot et al. [32] demonstrated that it is often possible to trans-

form a white-box attack into a black-box attack by using the black-box

as an oracle and reconstructing the model and using the reconstructed

paramaters.

6

http://cmusphinx.sourceforge.net/wiki/sphinxinaction

Gaussian. We also use knowledge of the dictionary file

in order to turn words into phonemes. An attacker could

reconstruct this file without much effort.

4.3 Simple approach

Given this additional information, a first possible attack

would be to use the additional information about exactly

what the MFCC coefficients are to re-mount the the pre-

vious black-box attack.

Instead of using the MFCC inversion process de-

scribed in §3.2, this time we implement it using gradient

descent—a generic optimization approach for finding a

good solution over a given space—an approach which

can be generalized to arbitrary objective functions.

Gradient descent attempts to find the minimum (or

maximum) value of an objective function over a multi-

dimensional space by starting from an initial point and

traveling in the direction which reduces the objective

most quickly. Formally, given a smooth function f , gra-

dient descent picks an initial point x0 and then repeat-

edly improves on it by setting xi+1 = xi + ε ·∇ f (x0) (for

some small ε) until we have a solution which is “good

enough”.

We define the objective function f (x) = (MFCC(x)−
y)2 · z, where x is the input frame, y is the target MFCC

vector, and z is the relative importance of each dimen-

sion. Setting z = (1,1, . . . ,1) takes the L2 norm as the

objective.

Gradient descent is not guaranteed to find the global

optimal value. For many problems it finds only a local

optimum. Indeed, in our experiments we have found that

gradient descent only finds local optima, but this turns

out to be sufficient for our purposes.

We perform gradient descent search one frame at a

time, working our way from the first frame to the last.

For the first frame, we allow gradient descent to pick any

410 samples. For subsequent frames, we fix the first 250

samples as the last 250 of the preceding frame, and run

gradient descent to find the best 160 samples for the rest

of the frame.

As it turns out, when we implement this attack, our

results are no better than the previous black-box-only at-

tack. Below we describe our improvements to make at-

tacks completely unrecognizable.

4.4 Improved attack

To construct hidden voice commands that are more diffi-

cult for humans to understand, we introduce two refine-

ments. First, rather than targeting a specific sequence of

MFCC vectors, we start with the target phrase we wish

to produce, derive a sequence of phonemes and thus a se-

quence of HMM states, and attempt to find an input that

matches that sequence of HMM states. This provides

more freedom by allowing the attack to create an input

that yields the same sequence of phonemes but generates

a different sequence of MFCC vectors.

Second, to make the attacks difficult to understand,

we use as few frames per phoneme as possible. In nor-

mal human speech, each phoneme might last for a dozen

frames or so. We try to generate synthetic speech that

uses only four frames per phoneme (a minimum of three

is possible—one for each HMM state). The intuition is

that the HMM is relatively insensitive to the number of

times each HMM state is repeated, but humans are sen-

sitive to it. If Sphinx does not recognize the phrase at the

end of this process, we use more frames per phoneme.

For each target HMM state, we pick one Gaussian

from that state’s GMM. This gives us a sequence of target

Gaussians, each with a mean and standard deviation.

Recall that the MFC transformation as we defined it

returns a 13-dimensional vector. However, there is a sec-

ond step which takes sequential derivatives of 13-vectors

to produce 39-vectors. The second step of our attack is

to pick these 13-vectors so that after we take the deriva-

tives, we maximize the likelihood score the GMM as-

signs to the resulting 39-vector. Formally, we wish to

find a sequence yi of 39-dimensional vectors, and xi of

13-dimensional vectors, satisfying the derivative relation

yi = (xi,xi+2 − xi−2,(xi+3 − xi−1)− (xi+1 − xi−3))

and maximizing the likelihood score

∏
i

exp

{ 39

∑
j=1

α
j

i − (y j
i −µ

j
i)

2

σ
j

i

}

where µi, σi, and αi are the mean, standard deviation,

and importance vectors respectively.

We can solve this problem exactly by using the least-

squares method. We maximize the log-likelihood,

log∏
i

exp

{

∑
j

−α
j

i +(y j
i −µ

j
i)

2

σ
j

i

}

=∑
i

∑
j

−α
j

i +(y j
i −µ

j
i)

2

σ
j

i

The log-likelihood is a sum of squares, so maximizing it

is a least-squares problem: we have a linear relationship

between the x and y values, and the error is a squared

difference.

In practice we cannot solve the full least squares prob-

lem all at once. The Viterbi algorithm only keeps track

of the 100 best paths for each prefix of the input, so if the

global optimal path had a prefix that was the 101st most

likely path, it would be discarded. Therefore, we work

one frame at a time and use the least squares approach to

find the next best frame.

This gives us three benefits: First, it ensures that at

every point in time, the next frame is the best possible

given what we have done so far. Second, it allows us to

7

try all eight possible Gaussians in the GMM to pick the

one which provides the highest score. Third, it makes our

approach more resilient to failures of gradient descent.

Sometimes gradient descent cannot hit the 13-vector sug-

gested by this method exactly. When this happens, the

error score for subsequent frames is based on the actual

13-vector obtained by gradient descent.

Complete description. We first define two sub-

routines to help specify our attack more precisely.

LSTDERIV(f , ḡ,g) accepts a sequence of 13-vectors f

that have already been reached by previous iterations of

search, the desired 39-vector sequence ḡ, and one new

39-vector g; it uses least squares to compute the next

13-vector which should be targeted along with the least-

squares error score. Specifically:

1. Define A as the 39k × 13(6+ k) dimensional matrix

which computes the derivative of a sequence of 6+ k

13-vectors and returns the k resulting 39-vectors.

2. Define b as the 39k dimensional vector corresponding

to the concatenation of the k− 1 39-vectors in ḡ and

the single 39-vector g.

3. Split A in two pieces, with AL being the left 13k

columns, and AR being the right 6×13 columns.

4. Define f̄ as the concatenation of the 13-vectors in f .

5. Define b̄ = b−AL · f̄ .

6. Using least squares, find the best approximate solu-

tion x̂ to the system of equations Ar · x̂ = b̄.

7. Return (|(Ar · x̂)− b̄|, x̂)
GRADDESC(s, t) accepts the previous frame s ∈R

410

and a target 13-vector t, and returns a frame ŝ ∈ R
410

such that ŝ matches s in the 250 entries where they over-

lap and MFCC(ŝ) is as close to t as possible. More pre-

cisely, it looks for a 160-dimensional vector x that min-

imizes f (x) = ||MFCC(s160...410||x)− s||2, where || is

concatenation, and returns s160...410||x. We use the New-

ton Conjugate-Gradient algorithm for gradient descent

and compute the derivative symbolically for efficiency.

Our full algorithm works as follows:

1. In the following, f will represent a sequence of cho-

sen 13-vectors (initially empty), ḡ a sequence of tar-

get 39-vectors, s the audio samples to return, and i

the iteration number (initially 0).

2. Given the target phrase, pick HMM states hi

such that each state corresponds to a portion of a

phoneme of a word in the phrase.

3. Let g
j
i be the 39-vector corresponding to the mean

of the jth Gaussian of the GMM for this HMM state.

One of these will be the target vector we will try to

invert.

4. For each j, solve the least squares prob-

lem (s j,d j) = LSTDERIV(f , ḡ,g j
i) and set ĵ =

argmin j s j and d̄ = d ĵ to obtain a sequence of 13-

vectors d̄0 to d̄i+6. Let d̄i be the “target 13-vector”

t. Append the 39-vector corresponding to t to ḡ.

5. Use gradient descent to get ŝ = GRADDESC(s, t).
Let s := ŝ. Append MFCC(s) to f .

6. Repeat for the next i from step 3 until all states are

completed.

4.5 Playing over the air

The previous attacks work well when we feed the audio

file directly into Sphinx. However, Sphinx could not cor-

rectly transcribe recordings made by playing the audio

using speakers. We developed three approaches to solve

this complication:

Make the audio easier to play over speaker. Gradi-

ent descent often generates audio with very large spikes.

It’s physically impossible for the speaker membrane

to move quickly enough to accurately reproduce these

spikes. We modified gradient descent to penalize wave-

forms that a speaker cannot reproduce. In particular, we

add a penalty for large second derivatives in the signal,

with the hope that gradient descent finds solutions that

do not include such large spikes.

Predict the MFCC of played audio. Even with this

penalty, the audio is still not perfectly playable over a

speaker. When we compared the waveform of the played

audio and recorded audio, they had significant differ-

ences. To address this, we built a model to predict

the MFCC when a file is played through a speaker and

recorded. Recall that the MFCC transformation essen-

tially computes the function C log(B ‖Ax‖2).
By playing and recording many audio signals, we

learned new matrices Â, B̂, Ĉ so that for each played

frame x and recorded frame y, C log(B ‖Ay‖2) is close

to Ĉ log(B̂ ‖Âx‖2). We computed Â, B̂, Ĉ by solving a

least-squares problem. This was still not enough for cor-

rect audio recognition, but it did point us in a promising

direction.

Play the audio during gradient descent. The ideas

above are not enough for recognition of recorded audio.

To see what is going on here, we compare the MFCC of

the played audio (after recording it) and the initial audio

(before playing it). We found the correlation to be very

high (r = .97 for the important coefficients).

Based on this observation, we augment our algorithm

to include an outer iteration of gradient descent. Given a

target MFCC we first run our previous gradient descent

algorithm to find a sound sequence which (before playing

over the speaker) reaches the target MFCC. Then, we

play and record it over the speaker. We obtain from this

the actual MFCC. We then adjust the target MFCC by

the difference between what was received and what is

desired.

We implemented this approach. Figure 4 plots the L2

8

●

●

●

●

●

●
●

●●●●●

●

●

●
●

●
●

●
●

●

●●
●

●
●

●●●●●
●●●●●●●

●

●

●●●●●
●

●

●
●

●

●
●●●●●

●

●

●
●

●

●

●

●

●●

●

0 10 20 30 40 50 60

1
2

3
4

5
6

Iteration Number

E
rr

o
r

Figure 4: Incorporating actually playing the audio over the

speakers into the gradient descent significantly reduces the er-

ror. The plot is of the L2 norm of the error of from the target

feature vector to the actually recorded feature vector, over time.

error (the difference between the target MFCC and what

is actually recorded during each iteration of our algo-

rithm) over time. By repeating this procedure 50 times

and taking the frame with the minimum noise, we obtain

an audio file that is correctly recognized by Sphinx after

being played over the speaker.

Since we perform 50 iterations of the inner gradient

descent per frame, and each iteration takes 30 seconds,

our approach takes nearly 30 hours to find a valid attack

sample. In practice, sometimes this process can take even

longer; since we are recording audio, if the microphone

picks up too much background noise, we must discard

the recorded sample and try again. We have built in an

error-detection system to mitigate these effects.

This might seem like a high cost to generate one at-

tack sample. However, once generated, we can reuse the

obfuscated audio on that speaker forever. Even though

the setup cost is high, it must only be performed once;

thereafter the same audio file can be used repeatedly.

4.6 Evaluation

Machine comprehension. For the former, we ap-

ply the above techniques and generate three audio com-

mands: “okay google, take a picture”, “okay google, text

12345”, and “okay google, browse to evil.com”. The

speech recognition system is an instance of CMU Sphinx

version 4-1.0beta6.

We determined the minimum number of frames per

phoneme that is sufficient to allow Sphinx to recognize

the command. Some words are more difficult to create

correctly than others, and thus require more frames per

phoneme. Detailed results can be found in Appendix E.

When we modify the lengths of the phonemes to account

for this data, over 90% of generated phrases are correctly

recognized by Sphinx.

To evaluate our attack playing over a microphone, we

equipped our computer with an external Blue Snowball

Table 3: White-box attack results. Percentages show success-

ful comprehension of Normal and Obfuscated version of voice

commands for humans and machines. Our white-box attack

constructs the obfuscated attack without a starting normal at-

tack; we only evaluate the machine understanding of the obfus-

cated commands.

Human Machine

Understanding Understanding

Normal 74% (230/310) –

Obfuscated 0% (1/377) 82% (82/100)

microphone. Obfuscated audio commands are played

from an Altec Lansing ASC45.1 speaker located 0.5 me-

ters from the microphone. All of our evaluated phrases

were commands recorded from the microphone. We

trained our MFCC vector predictor with one minute (16

million samples) of audio played over this speaker in a

large room to minimize echoes. The room was isolated,

and thus we encountered nearly no background noise.

The attack took 32 hours to generate the command for

“okay google, take a picture”, but required no human

intervention, using the same number of frames chosen

from the previous attack for a total of 101 frames.

Once the file was generated, we played the command

over the speaker 100 times. Sphinx was able to recognize

it in 82 of the instances. This is to be expected—for a

given audio played multiple times, there is a very high

(99%+) correlation between the recorded MFCC values.

Human comprehension. As with our black-box at-

tack, we evaluate our obfuscated commands with the

same Amazon Mechanical Turk study. Workers were

blind to how the obfuscated audio was generated. As a

baseline, we asked workers to transcribe a phrase spoken

by a human naturally. The results show that our white-

box attack is significantly better than the black-box at-

tack. No worker was able to transcribe more than half

of the words in the phrase correctly, and 75% of work-

ers transcriptions shared no words in common with the

actual phrase.

Four of the authors independently evaluated 377 tran-

scriptions of attack commands generated by our white-

box attack and compared them with correct transcrip-

tions to answer whether both transcriptions had the same

meaning. The four authors agreed on over 95% of in-

stances. Table 3 contains the results, showing that nor-

mal commands were correctly transcribed by workers

74% of the time, but obfuscated commands were al-

most never transcribed correctly. A comparison using

phoneme-level edit distance yields similar results; see

Appendix C.2.

While these results indicate that obfuscated commands

generated using our white-box attack are very difficult to

understand, we conducted a second study to determine

9

if users actually thought the audio was human speech

or just noise. Specifically, we created audio samples of

a human speaking a phrase, followed by an obfuscated

(different) phrase, and finally a human speaking a third

different phrase. In this study we were interested in see-

ing if the worker would try to transcribe the obfuscated

speech at all, or leave it out entirely.

Transcription accuracy was 80% for the first and last

commands given by a human speaking. Only 24% of

users attempted to transcribe the obfuscated speech. This

study clearly demonstrates that when given a choice

about what they viewed as speech and not-speech, the

majority of workers believed our audio was not speech.

5 Defenses

We are unaware of any device or system that currently

defends against obfuscated voice commands. In this sec-

tion, we explore potential defenses for hidden voice com-

mands across three dimensions: defenses that notify, de-

fenses that challenge, and defenses that detect and pro-

hibit. The defenses described below are not intended to

be exhaustive; they represent a first examination of po-

tential defenses against this new threat.

5.1 Defenses that notify

As a first-line of defense we consider defenses that alert

the user when the device interprets voice commands,

though these will only be effective when the device op-

erator is present and notification is useful (e.g., when it

is possible to undo any performed action).

The “Beep”, the “Buzz” and the “Lightshow”.

These defenses are very simple: when the device receives

a voice command, it notifies the user, e.g., by beeping.

The goal is to make the user aware a voice command

was accepted. There are two main potential issues with

“the Beep”: (i) attackers may be able to mask the beep,

or (ii) users may become accustomed to their device’s

beep and begin to ignore it. To mask the beep, the at-

tacker might play a loud noise concurrent with the beep.

This may not be physically possible depending on the

attacker’s speakers and may not be sufficiently stealthy

depending on the environment as the noise require can

be startling.

A more subtle attack technique is to attempt to mask

the beep via noise cancellation. If the beep were a single-

frequency sine wave an attacker might be able to cause

the user to hear nothing by playing an identical frequency

sine wave that is out of phase by exactly half a wave-

length. We evaluated the efficacy of this attack by con-

structing a mathematical model that dramatically over-

simplifies the attacker’s job and shows that even this

simplified “anti-beep” attack is nearly impossible. We

present a more detailed evaluation of beep cancelation in

Appendix D.

Some devices might inform the user when they inter-

pret voice commands by vibrating (“the buzz”) or by

flashing LED indicators (“the lightshow”). These noti-

fications also assume that the user will understand and

heed such warnings and will not grow accustomed to

them. To differentiate these alerts from other vibration

and LED alerts the device could employ different puls-

ing patterns for each message type. A benefit of such

notification techniques is that they have low overhead:

voice commands are relatively rare and hence generating

a momentary tone, vibration, or flashing light consumes

little power and is arguably non-intrusive.

Unfortunately, users notoriously ignore security warn-

ing messages, as is demonstrated by numerous studies

of the (in)effectiveness of warning messages in deployed

systems [35, 37, 44]. There is unfortunately little rea-

son to believe that most users would recognize and not

quickly become acclimated to voice command notifica-

tions. Still, given the low cost of deploying a notification

system, it may be worth considering in combination with

some of the other defenses described below.

5.2 Defenses that challenge

There are many ways in which a device may seek confir-

mation from the user before executing a voice command.

Devices with a screen might present a confirmation dia-

logue, though this limits the utility of the voice interface.

We therefore consider defenses in which the user must

vocally confirm interpreted voice commands. Present-

ing an audio challenge has the advantage of requiring the

user’s attention, and thus may prevent all hidden voice

commands from affected the device assuming the user

will not confirm an unintended command. A consistent

verbal confirmation command, however, offers little pro-

tection from hidden voice commands: the attacker also

provide the response in an obfuscated manner. If the at-

tacker can monitor any random challenge provided by

the device, it might also be spoofed. To be effective, the

confirmation must be easily produced by the human op-

erator and be difficult to forge by an adversary.

The Audio CAPTCHA. Such a confirmation system

already exists in the form of audio CAPTCHAs [26]

which is a challenge-response protocol in which the chal-

lenge consists of speech that is constructed to be difficult

for computers to recognize while being easily understood

by humans. The response portion of the protocol varies

by the type of CAPTCHA, but commonly requires the

human to transcribe the challenge.

Audio CAPTCHAs present an possible defense to hid-

den voice commands: before accepting a voice com-

mand, a device would require the user to correctly re-

10

spond to an audio CAPTCHA, something an attacker

using machine speech recognition would find difficult.

While it is clear that such a defense potentially has us-

ability issues, it may be worthwhile for commands that

are damaging or difficult to undo.

Audio CAPTCHAs are useful defenses against hidden

voice commands only if they are indeed secure. Previous

generations of audio CAPTCHAs have been shown to

be broken using automated techniques [6, 39]. As audio

CAPTCHAs have improved over time [11, 27], the ques-

tion arises if currently fielded audio CAPTCHAs have

kept pace with improvements in speech recognition tech-

nologies. In short, they have not.

We focus our examination on two popular audio

CAPTCHA systems: Google’s reCaptcha [33] offers au-

dio challenges initially consisting of five random dig-

its spread over approximately ten seconds; and NLP

Captcha [30] provides audio challenges of about three

seconds each composed of four or five alphanumeric

characters, with the addition of the word “and” before

the last character in some challenges.

We tested 50 challenges of reCaptcha and NLP

Captcha each by segmenting the audio challenges be-

fore transcribing them using Google’s speech recogni-

tion service. Figure 5 shows the results of transcription.

Here, we show the normalized edit distance, which is

the Levenshtein edit distance using characters as alpha-

bet symbols divided by the length of the challenge. More

than half and more than two-thirds of NLP Captchas and

reCaptchas, respectively, are perfectly transcribed using

automated techniques. Moreover, approximately 80% of

CAPTCHAs produced by either system have a normal-

ized edit distance of 0.3 or less, indicating a high fre-

quency of at least mostly correct interpretations. This

is relevant, since audio CAPTCHAs are unfortunately

not easily understood by humans; to increase usability,

reCaptcha provides some “leeway” and accepts almost-

correct answers.

Given the ease at which they can be solved using au-

tomated techniques, the current generation of deployed

audio CAPTCHA systems seems unsuitable for defend-

ing against hidden voice commands. Our results do not

indicate whether or not audio CAPTCHAs are necessar-

ily insecure. However, we remark that since computers

continue to get better at speech recognition developing

robust audio CAPTCHA puzzles is likely to become in-

creasingly more difficult.

5.3 Defenses that detect and prevent

Speaker recognition. Speaker recognition (some-

times called voice authentication) has been well-

explored as a biometric for authentication [7], with at

least Google recently including speaker recognition as

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Normalized edit distance

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

reCaptcha

NLP Captcha

Figure 5: Accuracy of breaking audio CAPTCHA using ma-

chine based speech-to-text conversion. A normalized edit dis-

tance of zero signifies exact prediction.

an optional feature in its Android platform [18]. Apple

also introduced similar functionality in iOS [2].

However, it is unclear whether speaker verification

necessarily prevents the use of hidden voice commands,

especially in settings in which the adversary may be able

to acquire samples of the user’s voice. Existing work

has demonstrated that voices may be mimicked using

statistical properties4; for example, Aylett and Yamag-

ishi [3] are able to mimic President George W. Bush’s

voice with as little of 10 minutes of his speech. Hence,

it may be possible to construct an obfuscated voice com-

mand based on recordings of the user’s voice that will be

accepted both by the speaker recognition and the voice

recognition systems. This is an interesting technical

question which we defer to future work.

Importantly, speaker recognition presents three well-

understood usability issues. First, a non-negligible false

negative rate might limit authorized use, which provides

an incentive for users to deactivate speaker recognition.

Second, speaker recognition requires training, and likely

necessitates the collection of a large speech corpus in or-

der to ensure the level of accuracy necessary for reliable

authentication. This need is compounded for devices

such as Amazon Echo that are intended to be used by

multiple users. Users may be unwilling to perform such

training. Finally, speaker recognition is unsuited for ap-

plications that have no prior interactions with the user,

for example, in kiosks for the visually impaired. We ar-

gue that such usability issues motivate the need for less

intrusive defenses, such as the ones described next.

The “Filter”. This defense decreases the fidelity of

the input audio before applying speech recognition. This

4CereVoice offers an online service for “[creating] a computer ver-

sion of your own voice” [8].

11

somewhat counterintuitive approach leverages the preci-

sion required by hidden voice commands: by slightly de-

grading the audio quality, normal commands are affected

only slightly while obfuscated inputs, already at the cusp

of being comprehensible by machine, are no longer rec-

ognized. The goal of the filter is thus to find a “sweet

spot” such that a slight decrease in fidelity will not too

adversely affect normal audio, but will eliminate hidden

voice commands.

Our filter implementation considers audio in the time

domain. For a filter rate f and an audio file consisting of

s samples, we preserve f · s samples chosen uniformly at

random and remove without replacement the remaining

(1− f)s samples.

We evaluate the efficacy of the filter defense using the

West Point Company English speech data corpus from

the University of Pennsylvania’s Linguistic Data Consor-

tium (LDC) [29]. The LDC corpus consists of Ameri-

can English-language speakers, 30 of them speaking the

same 50 sentences each, and another 109 speakers each

speaking a separate set of 185 sentences. For each sen-

tence in the corpus, we construct multiple obfuscated au-

dio files using the black-box techniques described in §3.

We do not introduce any background noise to either the

normal or obfuscated samples, and send all samples to

Google’s speech recognition system and evaluate the ac-

curacy of its transcriptions. We tested the filter against

16,440 normal commands and 27,589 obfuscated com-

mands, sampled uniformly at random without replace-

ment. The audio files were in WAV format with single

channel sampled at 22050 kHz with 32-bit bit depth in

float data type.

We define phoneme edit distance δ as the Levenshtein

edit distance between phoneme sequences of two tran-

scriptions, and L as the phoneme length of unfiltered sen-

tence. Finally we define relative phoneme edit distance

as δ/(δ +L), to reflect how close the two transcriptions

might sound to a human listener. Figure 6 plots the cu-

mulative distribution of the relative phoneme edit dis-

tances for our tested audio samples. Out of five tran-

scripts Google returned, we pick the transcript with the

smallest phoneme edit distance and calculate the rela-

tive phoneme edit distance.With an 80% filter (i.e., 80%

of the original audio is preserved), the hidden voice com-

mand is significantly perturbed—the fraction of correctly

transcribed sentences decreases from 41.74% to 7.49%

when the filter is applied. However, the filter also signif-

icantly degrades normal audio, decreasing accuracy by

14.35%, which is likely unacceptable for users who de-

pend on voice functionality. Through manual tuning, we

find that a 92% filter offers an attractive sweet spot, caus-

ing the fraction of correctly transcribed obfuscated files

to fall from 41.74% to 26.60%, while negligibly affect-

ing normal files, whose accuracy drops only 1.06%.

0.0 0.2 0.4 0.6 0.8 1.0
Relative Phoneme Edit Distance

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

80% filter; normal audio
80% filter; obfuscated audio
92% filter; normal audio
92% filter; obfuscated audio
unfiltered; normal audio
unfiltered; obfuscated audio

Figure 6: The cumulative distribution of relative phoneme edit

distances for normal and obfuscated commands, for filtering

rates of 80% and 92%.

The “Classifier”. As a final defense we examine

whether automated techniques can detect our hidden

voice commands—that is, can a computer classify inter-

preted speech as being generated by a human or a ma-

chine? In practice, a speech recognition system could in-

corporate a machine learning classifier as a final process-

ing step, dropping voice commands that are determined

to be machine-generated.

We construct a hidden voice command detector using

logistic regression. Our classifier uses mid-term features

(mean and standard deviation) derived from short term

features shown in Appendix F, extracted using the pyAu-

dioAnalysis library [16] from the original audio signal.

We use the same LDC speech corpus as used in our

filter experiments, and label each sample from the cor-

pus as normal. Using the black-box procedure described

in §3, we produce obfuscated hidden voice commands,

which we label as obfuscated. We overlay the back-

ground noise samples described in §3.3 to mimic a noisy

environment to both the normal and obfuscated samples.

We apply tenfold cross validation and report averages

across the ten runs. The confusion matrix that results

from classification is reported in Table 4. 99.8% of ob-

fuscated audio were detected as such, while only incur-

ring a 0.2% false positive rate, meaning that the classi-

fier would incorrectly discard two out of 1000 valid com-

mands.

To better gauge the classifier’s accuracy when pre-

sented with diverse inputs, we performed additional clas-

sification tests against 51 commands generated using the

white-box technique from §4 and audio from the Accent

GMU dataset [43]. The Accent GMU dataset is com-

prised of 569 audio samples of English text spoken by

different individuals with different regional accents. Nei-

ther the GMU or white-box samples were used to con-

12

Table 4: Confusion matrix of our classifier.

Normal Obfuscated

Normal 49.9% 0.1%

Obfuscated 0.1% 49.9%

Table 5: Confusion matrix of our classifier, when classifying

audio from outside corpora.

Normal Attack

White-box Attack 30.7% 69.3%

Accent GMU 99.2% 0.8%

struct the classifier. That is, our results show the efficacy

of a classifier constructed with only normal and black-

box obfuscated command samples as training data. Im-

portantly, the GMU dataset consists of all normal (non-

obfuscated) samples, while the white-box dataset con-

tains only attack commands. The confusion matrix for

this classification task is presented in Table 5. For the

GMU dataset, our classifier performs well, incurring less

than a 1% false positive rate. The performance is worse

for the white-box attack. Still, even against this strong

attack which requires complete knowledge of the back-

end speech recognition system, the classifier is able to

flag nearly 70% of the hidden voice commands as being

malicious.

5.4 Summary of defenses

We present the first examination of defenses against hid-

den voice commands. Our analysis of notification de-

fenses (§5.1) shows that security alerts are difficult to

mask, but may be ignored by users. Still, given their

ease of deployment and small footprint, such defenses

are worth considering. Active defenses, such as au-

dio CAPTCHAs (§5.2) have the advantage that they re-

quire users to affirm voice commands before they be-

come effected. Unfortunately, active defenses also in-

cur large usability costs, and the current generation of

audio-based reverse Turing tests seem easily defeatable.

Most promising are prevention and detection defenses

(§5.3). Our findings show that filters which slightly

degrade audio quality can be tuned to permit normal

audio while effectively eliminating hidden voice com-

mands. Likewise, our initial exploration of machine

learning-based defenses shows that simple classification

techniques yield high accuracy in distinguishing between

user- and computer-generated voice commands.

6 Limitations and Discussion

While the results of our defenses are encouraging, a limi-

tation of this paper is that the defenses do not offer proofs

of security. In particular, an adversary may be able to

construct hidden voice commands that are engineered to

withstand filtering and defeat classifiers.

The random sampling used by our filter complicates

the task of designing a “filter-resistant” hidden voice

command since the adversary has no advanced knowl-

edge of what components of his audio command will be

discarded. The adversary is similarly constrained by the

classifier, since the attacks we describe in §3 and §4 sig-

nificantly affect the features used in classification. Of

course, there might be other ways to conceal voice com-

mands that are more resistant to information loss yet re-

tain many characteristics of normal speech, which would

likely defeat our existing detection techniques. Design-

ing such attacks is left as a future research direction.

The attacks and accompanying evaluations in §3 and

§4 demonstrate that hidden voice commands are effec-

tive against modern voice recognition systems. There

is clearly room for another security arms race between

more clever hidden voice commands and more robust de-

fenses. We posit that, unfortunately, the adversary will

likely always maintain an advantage so long as humans

and machines process speech dissimilarly. That is, there

will likely always be some room in this asymmetry for

“speaking directly” to a computational speech recogni-

tion system in a manner that is not human parseable.

Future work. CMU Sphinx is a “traditional” ap-

proach to speech recognition which uses a hidden

Markov model. More sophisticated techniques have re-

cently begun to use neural networks. One natural ex-

tension of this work is to extend our white-box attack

techniques to apply to RNNs.

Additional work can potentially make the audio even

more difficult for an human to detect. Currently, the

white-box hidden voice commands sound similar to

white noise. An open question is if it might be possi-

ble to construct working attacks that sound like music or

other benign noise.

7 Conclusion

While ubiquitous voice-recognition brings many benefits

its security implications are not well studied. We inves-

tigate hidden voice commands which allow attackers to

issue commands to devices which are otherwise unintel-

ligible to users.

Our attacks demonstrate that these attacks are possi-

ble against currently-deployed systems, and that when

knowledge of the speech recognition model is assumed

more sophisticated attacks are possible which become

much more difficult for humans to understand. (Au-

dio files corresponding to our attacks are available at

http://hiddenvoicecommands.com.)

These attacks can be mitigated through a number of

different defenses. Passive defenses that notify the user

13

http://hiddenvoicecommands.com

an action has been taken are easy to deploy and hard to

stop but users may miss or ignore them. Active defenses

may challenge the user to verify it is the owner who is-

sued the command but reduce the ease of use of the sys-

tem. Finally, speech recognition may be augmented to

detect the differences between real human speech and

synthesized obfuscated speech.

We believe this is an important new direction for future

research, and hope that others will extend our analysis of

potential defenses to create sound defenses which allow

for devices to securely use voice-commands.

Acknowledgments. We thank the anonymous re-

viewers for their insightful comments. This paper

is partially funded from National Science Foundation

grants CNS-1445967, CNS-1514457, CNS-1149832,

CNS-1453392, CNS-1513734, and CNS-1527401. This

research was additionally supported by Intel through the

ISTC for Secure Computing, and by the AFOSR under

MURI award FA9550-12-1-0040. The findings and opin-

ions expressed in this paper are those of the authors and

do not necessarily reflect the views of the funding agen-

cies.

References

[1] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, and C. D. Spyropoulos.
An Experimental Comparison of Naive Bayesian and Keyword-based Anti-
spam Filtering with Personal e-Mail Messages. In ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR), 2000.
[2] Apple. Use Siri on your iPhone, iPad, or iPod touch. Support article.

Available at https://support.apple.com/en-us/HT204389.
[3] M. P. Aylett and J. Yamagishi. Combining Statistical Parameteric Speech

Synthesis and Unit-Selection for Automatic Voice Cloning. In LangTech,
2008.

[4] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar. The security of machine
learning. Machine Learning, 81(2):121–148, 2010.

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giac-
into, and F. Roli. Evasion Attacks against Machine Learning at Test Time.
In Machine Learning and Knowledge Discovery in Databases, 2013.

[6] E. Bursztein and S. Bethard. Decaptcha: Breaking 75% of eBay Audio
CAPTCHAs. In USENIX Workshop on Offensive Technologies (WOOT),
2009.

[7] J. Campbell, J.P. Speaker Recognition: A Tutorial. Proceedings of the

IEEE, 85(9):1437–1462, 1997.
[8] CereVoice Me Voice Cloning Service.

https://www.cereproc.com/en/products/cerevoiceme.
[9] Crowd Sounds — Free Sounds at SoundBible. http://soundbible.com/tags-

crowd.html.
[10] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial

Classification. In ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), 2004.
[11] M. Darnstadt, H. Meutzner, and D. Kolossa. Reducing the Cost of Breaking

Audio CAPTCHAs by Active and Semi-supervised Learning. In Interna-

tional Conference on Machine Learning and Applications (ICMLA), 2014.
[12] W. Diao, X. Liu, Z. Zhou, and K. Zhang. Your Voice Assistant is Mine:

How to Abuse Speakers to Steal Information and Control Your Phone. In
ACM Workshop on Security and Privacy in Smartphones & Mobile Devices

(SPSM), 2014.
[13] H. Drucker, S. Wu, and V. Vapnik. Support vector machines for spam

categorization. IEEE Transactions on Neural Networks, 10(5), Sep 1999.
[14] A. Fawzi, O. Fawzi, and P. Frossard. Analysis of classifiers’ robustness to

adversarial perturbations. arXiv preprint arXiv:1502.02590, 2015.
[15] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that ex-

ploit confidence information and basic countermeasures. In Proceedings

of the 22nd ACM Conference on Computer and Communications Security,
2015.

[16] T. Giannakopoulos. Python Audio Analysis Library: Fea-
ture Extraction, Classification, Segmentation and Applications.
https://github.com/tyiannak/pyAudioAnalysis.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[18] Google. Turn on “Ok Google” on your Android. Support article. Available
at https://support.google.com/websearch/answer/6031948.

[19] Deep Neural Networks are Easily Fooled: High Confidence Predictions for

Unrecognizable Images, 2015. IEEE.
[20] C. Ittichaichareon, S. Suksri, and T. Yingthawornsuk. Speech recognition

using MFCC. In International Conference on Computer Graphics, Simula-

tion and Modeling (ICGSM), 2012.
[21] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee. A11y Attacks: Exploit-

ing Accessibility in Operating Systems. In ACM Conference on Computer

and Communications Security (CCS), November 2014.
[22] A. Kantchelian, S. Afroz, L. Huang, A. C. Islam, B. Miller, M. C. Tschantz,

R. Greenstadt, A. D. Joseph, and J. D. Tygar. Approaches to Adversarial
Drift. In ACM Workshop on Artificial Intelligence and Security, 2013.

[23] C. Kasmi and J. Lopes Esteves. Iemi threats for information security: Re-
mote command injection on modern smartphones. IEEE Transactions on

Electromagnetic Compatibility, PP(99):1–4, 2015.
[24] P. Lamere, P. Kwok, W. Walker, E. Gouvea, R. Singh, B. Raj, and P. Wolf.

Design of the CMU Sphinx-4 Decoder. In Eighth European Conference on

Speech Communication and Technology, 2003.
[25] A. Mahendran and A. Vedaldi. Understanding deep image representations

by inverting them. In Conference on Computer Vision and Pattern Recog-

nition (CVPR) 2015, 2015.
[26] M. May. Inaccessibility of CAPTCHA: Alternatives to Visual Turing Tests

on the Web. Technical report, W3C Working Group Note, 2005. Available
at http://www.w3.org/TR/turingtest/.

[27] H. Meutzner, S. Gupta, and D. Kolossa. Constructing Secure Audio
CAPTCHAs by Exploiting Differences Between Humans and Machines. In
Annual ACM Conference on Human Factors in Computing Systems (CHI),
2015.

[28] D. E. Meyer and R. W. Schvaneveldt. Facilitation in Recognizing Pairs of
Words: Evidence of a Dependence between Retrieval Operations. Journal

of Experimental Psychology, 90(2):227, 1971.
[29] J. Morgan, S. LaRocca, S. Bellinger, and C. C. Ruscelli. West

Point Company G3 American English Speech. Linguistic Data Con-
sortium, item LDC2005S30. University of Pennsylvania. Available at
https://catalog.ldc.upenn.edu/LDC2005S30, 2005.

[30] NLP Captcha. http://nlpcaptcha.in/.
[31] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and

A. Swami. The limitations of deep learning in adversarial settings. arXiv

preprint arXiv:1511.07528, 2015.
[32] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine

learning: from phenomena to black-box attacks using adversarial samples.
arXiv preprint arXiv:1605.07277, 2016.

[33] reCAPTCHA. http://google.com/recaptcha.
[34] H. Sak, A. Senior, K. Rao, F. Beaufays, and J. Schalkwyk. Google

Voice Search: Faster and More Accurate, 2015. Google Research Blog
post. Available at http://googleresearch.blogspot.com/2015/09/google-
voice-search-faster-and-more.html.

[35] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The Emperor’s New
Security Indicators: An Evaluation of Website Authentication and the Ef-
fect of Role Playing on Usability Studies. In IEEE Symposium on Security

and Privacy (Oakland), 2007.
[36] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and X. Wang.

Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smart-
phones. In Network and Distributed System Security Symposium (NDSS),
2011.

[37] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor. Cry-
ing Wolf: An Empirical Study of SSL Warning Effectiveness. In USENIX

Security Symposium (USENIX), 2009.
[38] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus. Intriguing Properties of Neural Networks. arXiv preprint

arXiv:1312.6199, 2013.
[39] J. Tam, J. Simsa, S. Hyde, and L. V. Ahn. Breaking Audio CAPTCHAs. In

Advances in Neural Information Processing Systems (NIPS), 2008.
[40] J. Tygar. Adversarial Machine Learning. IEEE Internet Computing, 15(5):

4–6, 2011.
[41] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields. Cocaine Noodles: Exploit-

ing the Gap between Human and Machine Speech Recognition. In USENIX

Workshop on Offensive Technologies (WOOT), August 2015.
[42] O. Viikki and K. Laurila. Cepstral Domain Segmental Feature Vector Nor-

malization for Noise Robust Speech Recognition. Speech Communication,
25(13):133–147, 1998.

[43] S. H. Weinberger. Speech Accent Archive. George Mason University, 2015.
Available at http://accent.gmu.edu.

[44] M. Wu, R. C. Miller, and S. L. Garfinkel. Do Security Toolbars Actually
Prevent Phishing Attacks? In SIGCHI Conference on Human Factors in

Computing Systems (CHI), 2006.

14

https://support.apple.com/en-us/HT204389
https://www.cereproc.com/en/products/cerevoiceme
http://soundbible.com/tags-crowd.html
http://soundbible.com/tags-crowd.html
https://github.com/tyiannak/pyAudioAnalysis
https://support.google.com/websearch/answer/6031948
http://www.w3.org/TR/turingtest/
https://catalog.ldc.upenn.edu/LDC2005S30
http://nlpcaptcha.in/
http://google.com/recaptcha
http://googleresearch.blogspot.com/2015/09/google-voice-search-faster-and-more.html
http://googleresearch.blogspot.com/2015/09/google-voice-search-faster-and-more.html
http://accent.gmu.edu

A Additional Background on Sphinx

As mentioned in §4, the first transform taken by Sphinx

is to split the audio in to overlapping frames, as shown

in Figure 7. In Sphinx, frames are 26ms (410 samples)

long, and a new frame begins every 10ms (160 samples).

Original audio stream

Frame 0

Frame 1

Frame 2

Frame offset Frame size

Figure 7: The audio file is split into overlapping frames.

MFC transform. Once Sphinx creates frames, it runs

the MFC algorithm. Sphinx’s MFC implementation in-

volves five steps:

1. Pre-emphasizer: Applies a high-pass filter that re-

duces the amplitude of low-frequencies.

2. Cosine windower: Weights the samples of the

frame so the earlier and later samples have lower

amplitude.

3. FFT: Computes the first 257 terms of the (complex-

valued) Fast Fourier Transform of the signal and re-

turns the squared norm of each.

4. Mel filter: Reduces the dimensionality further by

splitting the 257 FFT terms into 40 buckets, sum-

ming the values in each bucket, then returning the

log of each sum.

5. DCT: Computes the first 13 terms of the Discrete

Cosine Transform (DCT) of the 40 bucketed val-

ues.5

Despite the many steps involved in the MFC pipeline,

the entire process (except the running average and deriva-

tives steps) can be simplified into a single equation:

MFCC(x) =C log(B ‖Ax‖2)

where the norm, squaring and log are done component-

wise to each element of the vector. A is a 410 × 257

matrix which contains the computation performed by the

pre-emphasizer, cosine windower, and FFT. B is a 257×
40 matrix which computes the Mel filter, and C is a 40×
13 matrix which computes the DCT.

Sphinx is configured with a dictionary file, which lists

all valid words and maps each word to its phonemes,

5While it may seem strange to take the DCT of the frequency-

domain data, this second FFT is able to extract higher-level features

about which frequencies are common, and is more tolerant to a change

in pitch.

T-1 T-3T-2U-1 U-3U-2T-1 T-3T-2

Figure 8: The HMM used by Sphinx encoding the word “two”.

Each phoneme is split into three HMM states (which may re-

peat). These HMM states must occur in sequence to complete a

phoneme. The innermost boxes are the phoneme HMM states;

the two dashed boxes represent the phoneme, and the outer

dashed box the word “two”.

and a grammar file, which specifies a BNF-style formal

grammar of what constitutes a valid sequence of words.

In our experiments we omit the grammar file and assume

any word can follow any other with equal probability.

(This makes our job as an attacker more difficult.)

The HMM states can be thought of as phonemes, with

an edge between two phonemes that can occur consecu-

tively in some word. Sphinx’s model imposes additional

restrictions: its HMM is constructed so that all paths in

the HMM correspond to a valid sequence of words in the

dictionary. Because of this, any valid path through the

HMM corresponds to a valid sequence of words. For ex-

ample, since the phoneme “g” never follows itself, the

HMM only allows one “g” to follow another if they are

the start and end of words, respectively.

The above description is slightly incomplete. In real-

ity, each phoneme is split into three HMM states, which

must occur in a specific order, as shown in Figure 8. Each

state corresponds to the beginning, middle, or end of a

phoneme. A beginning-state has an edge to the middle-

state, and the middle-state has an edge to the end-state.

The end-phoneme HMM state connects to beginning-

phoneme HMM states of other phonemes. Each state

also has a self-loop that allows the state to be repeated.

Given a sequence of 39-vectors, Sphinx uses the

Viterbi algorithm to try to find the 100 most likely paths

through the HMM model (or an approximation thereto).

B Detailed Machine Comprehension of

Black-box Attack

The detailed results of machine comprehension of black-

box attacks are presented in Figure 9.

We note that Figure 9 contains an oddity: in a few

instances, the transcription success rate decreases as the

SNR increases. We suspect that this is due to our use

of median SNR, since the background samples contain

non-uniform noise and transient spikes in ambient noise

levels may adversely affect recognition. Overall, how-

ever, we observe a clear (and expected) trend in which

transcription accuracy improves as SNR increases.

15

0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Ca
si

no
Su

cc
es

s
Ra

te

OK Google

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Turn on Airplane Mode

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Call 911

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sr
oo

m
Su

cc
es

s
Ra

te

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40

0.0

0.2

0.4

0.6

0.8

1.0

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40
SNR

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

au
se

Su
cc

es
s

Ra
te

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40
SNR

0.0

0.2

0.4

0.6

0.8

1.0

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

0 5 10 15 20 25 30 35 40
SNR

0.0

0.2

0.4

0.6

0.8

1.0

Normal (iPhone)
Obfuscated (iPhone)
Normal (Android)
Obfuscated (Android)

Figure 9: Machine understanding of normal and obfuscated variants of “OK Google”, “Turn on Airplane Mode”, and “Call 911”

voice commands (column-wise) under different background noises (row-wise). Each graph shows the measured average success

rate (the fraction of correct transcripts) on the y-axis as a function of the signal-to-noise ratio.

C Analysis of Transcriptions using

Phoneme-Based Edit Distance Met-

rics

C.1 Black-box attack

To verify the results of the white-box survey and to bet-

ter understand the results of Amazon Mechanical Turk

Study, we first performed a simple binary classification

of transcription responses provided by Turk workers.

We define phoneme edit distance δ as the Levenshtein

edit distance between phonemes of two transcriptions.

We define φ as δ/L, where L is the phoneme length of

normal command sentence. The use of φ reflects how

close the transcriptions might sound to a human listener.

φ < 0.5 indicates that the human listener successfully

comprehended at least 50% of the underlying voice com-

mand. We consider this as successful comprehension by

human, implying attack failure; otherwise, we consider

it a success for the attacker. Table 6 shows the results of

our binary classification. The difference in success rates

of normal and obfuscated commands is similar to that of

human listeners in Table 2, validating the survey results.

We used relative phoneme edit distance to show the

gap between transcriptions of normal and obfuscated

commands submitted by turk workers. The relative

phoneme edit distance is calculated as δ/(δ + L), L

is again the phoneme length of normal command sen-

tence. The relative phoneme edit distance has a range

of [0,1), where 0 indicates exact match and larger rel-

ative phoneme edit distances mean the evaluator’s tran-

scription further deviates from the ground truth. By this

definition, a value of 0.5 is achievable by transcribing si-

lence. Values above 0.5 indicate no relationship between

the transcription and correct audio.

Figure 10 shows the CDF of the relative phoneme edit

distance for the (left) “OK Google”, (center) “Turn on

Airplane Mode” and (right) “Call 911” voice commands.

These graphs show similar results as reported in Table 2:

Turk workers were adept at correctly transcribing normal

commands even in presence of background noise; over

90% of workers made perfect transcriptions with an edit

distance of 0. However, the workers were far less able to

correctly comprehend obfuscated commands: less than

30% were able to achieve a relative edit distance less than

0.2 for “OK Google” and “Turn on Airplane Mode”.

16

Table 6: Black-box attack. Percentages show the fraction of human listeners who were able to comprehend at least 50% of voice

commands.

OK Google Turn On Airplane Mode Call 911

Normal 97% (97/100) 89% (102/114) 92% (75/81)

Obfuscated 24% (23/94) 47% (52/111) 95% (62/65)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Phoneme Edit Distance

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

OK Google

Obfuscated (casino)
Normal (casino)
Obfuscated (shopping mall)
Normal (shopping mall)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Phoneme Edit Distance

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Turn on Airplane Mode

Obfuscated (casino)
Normal (casino)
Obfuscated (shopping mall)
Normal (shopping mall)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Phoneme Edit Distance

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Call 911

Obfuscated (casino)
Normal (casino)
Obfuscated (shopping mall)
Normal (shopping mall)

Figure 10: Cumulative distribution of relative phoneme edit distances of Amazon Mechanical Turk workers’ transcriptions for

(left) “OK Google”, (center) “Turn on Airplane Mode” and (right) “Call 911” voice commands, with casino and shopping mall

background noises. The attack is successful for the first two commands, but fails for the third.

Table 7: White-box attack. Percentages show the fraction of

human listeners who were able to comprehend at least 50% of

phonemes in a command.

Command

Normal 97% (297/310)

Obfuscated 10% (37/377)

C.2 White-box attack

To verify the results of our authors review of the Turk

study, we computed the edit distance of transcribed com-

mands with actual commands. Table 7 says a command

is a match if at least 50% of phonemes were transcribed

correctly, to eliminate potential author bias. This metric

is less strict both for normal commands and obfuscated

commands, but the drop in quality is nearly as strong.

D Canceling out the Beep

Even when constrained to simplistic and conservative

mathematical models, it is difficult to cancel out a beep

played by a mobile device.

D.1 Two ears difficulties

Setup: The victim has two ears located at points E

and F , and a device at point P. The attacker has complete

control over a speaker at point A.

Threat model: The attacker has complete knowledge

of the setup, including what the beep sounds like, when

the beep will begin playing, and the location of all four

points E,F,P and A. We assume for simplicity that sound

amplitude does not decrease with distance.

The attacker loses the game if the victim hears a sound

in either ear. Our question, then, is: can the attacker can-

cel out the sound of the beep in both ears simultaneously?

Since sound amplitude does not attenuate with distance,

the attacker can focus solely on phase matching: to can-

cel out a sound, the attacker has to play a signal that is

exactly π radians out of phase with the beep. This means

the attacker has to know the phase of the signal to a good

degree of accuracy.

In our model, canceling out sound at one ear (say E)

is easy for the attacker. The attacker knows the dis-

tance dPE , and so knows tPE , the time it will take for

the sound to propagate from P to E. Similarly, the at-

tacker knows tAE . This is enough to determine the delay

that he needs to introduce: he should start playing his

signal
(dPE−dAE) (mod λ)

c
(where λ is the wavelength) sec-

onds after the start of the beep (where c is the speed of

sound), and the signal he should play from his speaker is

the inverse of the beep (an “anti-beep”).

However, people have two ears, and so there will still

be some remnant of the beep at the other ear F : the beep

will arrive at that ear dPF
c

seconds after being played,

while the anti-beep will arrive dAF
c

seconds after the

anti-beep starts, i.e., dPE−dAE+dAF
c

seconds after the beep

starts. This means that the anti-beep will be delayed by
dPE−dAE+dAF−dPF

c
seconds compared to the beep.

Therefore, the attacker must be sure that they are

placed exactly correctly so that the cancellation occurs

at just the right time for both ears. This is the set of

points where (dPE − dAE + dAF − dPF) = 0. That is, the

attacker can be standing anywhere along half of a hyper-

bola around the user.

17

●

●

●

●

●

●

●

●●

●

● ●

● ●

● ●

● ●

● ●

●

●

●

●

●

● ●

●

●

● ● ●

50 60 70 80 90 100

6
0

6
5

7
0

7
5

Distance from speaker 1 (cm)

V
o
lu

m
e
 R

e
c
o
rd

e
d
 (

d
B

)

Figure 11: Plot of the amplitude of attempted noise cancellation

of a tone at 440Hz

Finally, there is one more issue: any device which can

perform voice recognition must have a microphone, and

so can therefore listen actively for an attack. This then

requires not only that the attacker be able to produce ex-

actly the inverse signal at both ears, but also zero total

volume at the device’s location. This then fixes the at-

tacker’s location to only one potential point in space.

D.2 Real-world difficulties

In the above setup we assumed a highly idealized model

of the real world. For instance, we assumed that the at-

tacker knows all distances involved very precisely. This

is of course difficult to achieve in practice (especially if

the victim moves his head). Our calculations show that

canceling over 90% of the beep requires an error of at

most 3% in the phase. Putting this into perspective, for a

1Khz beep, to eliminate 90% of the noise, the adversary

needs to be accurate to within 3 inches.

In practice, the attack is even more difficult than de-

scribed above. The adversary may have to contend

with multiple observers, and has to consider background

noise, amplitude attenuation with distance, and so on.

Even so, to investigate the ability of an attacker to can-

cel sound in near-ideal conditions, we conducted an ex-

periment to show how sound amplitude varies as a func-

tion of the phase difference in ideal conditions. The setup

is as follows: two speakers are placed facing each other,

separated by a distance d. Both speakers play the same

pure tone at the same amplitude. We placed a micro-

phone in between, and measured the sound amplitude at

various points on the line segment joining the two. For

our experiment, d = 1.5m and the frequency of the tone

is f = 440Hz. The results are plotted in Figure 11.

As can be seen, the total cancellation does follow a

sine wave as would be expected, however there is noise

due to real-world difficulties. This only makes the at-

tacker’s job more difficult.

E Machine Interpretation of Obfuscated

Command

Table 8: For each of the three phrases generated in our white-

box attack, the phrase that Sphinx recognized. This data is used

to alter the lengths of each phoneme to reach words more ac-

curately. Some words such as “for” and “four” are pronounced

exactly the same: Sphinx has no language model and so makes

errors here.

Phrases as recognized by CMU Sphinx

Count Phrase

3 okay google browse evil dot com
1 okay google browse evil that come
1 okay google browse evil them com
1 okay google browse for evil dot com
6 okay google browse two evil dot com
2 okay google browse two evil that com
1 okay google browse who evil not com
1 okay google browse who evil that com
1 okay up browse evil dot com

5 okay google picture
2 okay google take a picture
1 okay google take of
1 okay google take of picture
6 okay google take picture

10 okay google text one three for five
1 okay google text one two three for five
2 okay google text one who three for five
3 okay google text want three for five

F Short-Term Features used by Classifier

Defense

Table 9: Short term features used for extracting mid-term fea-

tures.

Feature Description

Zero Crossing Rate The rate of sign-changes of the signal during the du-
ration of a particular frame.

Energy The sum of squares of the signal values, normalized
by the respective frame length.

Entropy of Energy The entropy of sub-frames’ normalized energies.

Spectral Centroid The center of gravity of the spectrum.

Spectral Spread The second central moment of the spectrum.

Spectral Entropy Entropy of the normalized spectral energies for a set
of sub-frames.

Spectral Flux The squared difference between the normalized
magnitudes of the spectra of the two successive
frames.

Spectral Rolloff The frequency below which 90% of the magnitude
distribution of the spectrum is concentrated.

MFCCs Mel Frequency Cepstral Coefficients

Chroma Vector A 12-element representation of the spectral energy

Chroma Deviation The standard deviation of the 12 chroma coeffi-
cients.

18

	Introduction
	Background and Related Work
	Black-box Attacks
	Threat model & attacker assumptions
	Overview of approach
	Experimental setup
	Evaluation

	White-box Attacks
	Overview of CMU Sphinx
	Threat model
	Simple approach
	Improved attack
	Playing over the air
	Evaluation

	Defenses
	Defenses that notify
	Defenses that challenge
	Defenses that detect and prevent
	Summary of defenses

	Limitations and Discussion
	Conclusion
	Additional Background on Sphinx
	Detailed Machine Comprehension of Black-box Attack
	Analysis of Transcriptions using Phoneme-Based Edit Distance Metrics
	Black-box attack
	White-box attack

	Canceling out the Beep
	Two ears difficulties
	Real-world difficulties

	Machine Interpretation of Obfuscated Command
	Short-Term Features used by Classifier Defense

